20.0 10-BIT HIGH SPEED ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

> Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the dsPIC30F Family Reference Manual (DS70046).

The10-bit high-speed analog-to-digital converter (A/D) allows conversion of an analog input signal to a 10-bit digital number. This module is based on a Successive Approximation Register (SAR) architecture, and provides a maximum sampling rate of 500 ksps . The A/D module has 16 analog inputs which are multiplexed into four sample and hold amplifiers. The output of the sample and hold is the input into the converter, which generates the result. The analog reference voltages are software selectable to either the device supply voltage (AVDd/AVss) or the voltage level on the (VREF+/VREF-) pin. The A/D converter has a unique feature of being able to operate while the device is in Sleep mode.

The A/D module has six 16-bit registers:

- A/D Control Register1 (ADCON1)
- A/D Control Register2 (ADCON2)
- A/D Control Register3 (ADCON3)
- A/D Input Select Register (ADCHS)
- A/D Port Configuration Register (ADPCFG)
- A/D Input Scan Selection Register (ADCSSL)

The ADCON1, ADCON2 and ADCON3 registers control the operation of the A/D module. The ADCHS register selects the input channels to be converted. The ADPCFG register configures the port pins as analog inputs or as digital I/O. The ADCSSL register selects inputs for scanning.

Note:	The SSRC<2:0>, ASAM, SIMSAM,
	SMPI<3:0>, BUFM and ALTS bits, as well
	as the ADCON3 and ADCSSL registers,
	must not be written to while ADON $=1$.
	This would lead to indeterminate results.

The block diagram of the A/D module is shown in Figure 20-1.

dsPIC30F6010

FIGURE 20-1: 10-BIT HIGH SPEED A/D FUNCTIONAL BLOCK DIAGRAM

20.1 A/D Result Buffer

The module contains a 16-word dual port read-only buffer, called ADCBUF0...ADCBUFF, to buffer the A/D results. The RAM is 10-bits wide, but is read into different format 16 -bit words. The contents of the sixteen A/D conversion result buffer registers, ADCBUFO through ADCBUFF, cannot be written by user software.

20.2 Conversion Operation

After the A/D module has been configured, the sample acquisition is started by setting the SAMP bit. Various sources, such as a programmable bit, timer time-outs and external events, will terminate acquisition and start a conversion. When the A / D conversion is complete, the result is loaded into ADCBUFO...ADCBUFF, and the A/D interrupt flag ADIF and the DONE bit are set after the number of samples specified by the SMPI bit.
The following steps should be followed for doing an A/D conversion:

1. Configure the A / D module:

- Configure analog pins, voltage reference and digital I/O
- Select A/D input channels
- Select A/D conversion clock
- Select A/D conversion trigger
- Turn on A/D module

2. Configure A / D interrupt (if required):

- Clear ADIF bit
- Select A/D interrupt priority

3. Start sampling.
4. Wait the required acquisition time.
5. Trigger acquisition end, start conversion
6. Wait for A/D conversion to complete, by either:

- Waiting for the A/D interrupt

7. Read A/D result buffer, clear ADIF if required.

20.3 Selecting the Conversion Sequence

Several groups of control bits select the sequence in which the A/D connects inputs to the sample/hold channels, converts channels, writes the buffer memory, and generates interrupts. The sequence is controlled by the sampling clocks.
The SIMSAM bit controls the acquire/convert sequence for multiple channels. If the SIMSAM bit is ' 0 ', the two or four selected channels are acquired and converted sequentially, with two or four sample clocks. If the SIMSAM bit is ' 1 ', two or four selected channels are acquired simultaneously, with one sample clock. The channels are then converted sequentially. Obviously, if there is only 1 channel selected, the SIMSAM bit is not applicable.

The CHPS bits selects how many channels are sampled. This can vary from 1, 2 or 4 channels. If CHPS selects 1 channel, the CH 0 channel will be sampled at the sample clock and converted. The result is stored in the buffer. If CHPS selects 2 channels, the CHO and CH 1 channels will be sampled and converted. If CHPS selects 4 channels, the $\mathrm{CH}, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 channels will be sampled and converted.
The SMPI bits select the number of acquisition/conversion sequences that would be performed before an interrupt occurs. This can vary from 1 sample per interrupt to 16 samples per interrupt.
The user cannot program a combination of CHPS and SMPI bits that specifies more than 16 conversions per interrupt, or 8 conversions per interrupt, depending on the BUFM bit. The BUFM bit, when set, will split the 16--word results buffer (ADCBUFO...ADCBUFF) into two 8 -word groups. Writing to the 8 -word buffers will be alternated on each interrupt event. Use of the BUFM bit will depend on how much time is available for moving data out of the buffers after the interrupt, as determined by the application.
If the processor can quickly unload a full buffer within the time it takes to acquire and convert one channel, the BUFM bit can be ' 0 ' and up to 16 conversions may be done per interrupt. The processor will have one sample and conversion time to move the sixteen conversions.
If the processor cannot unload the buffer within the acquisition and conversion time, the BUFM bit should be ' 1 '. For example, if $\mathrm{SMPI}<3: 0>(\mathrm{ADCON} 2<5: 2>$) $=$ 0111, then eight conversions will be loaded into $1 / 2$ of the buffer, following which an interrupt occurs. The next eight conversions will be loaded into the other $1 / 2$ of the buffer. The processor will have the entire time between interrupts to move the eight conversions.

The ALTS bit can be used to alternate the inputs selected during the sampling sequence. The input multiplexer has two sets of sample inputs: MUX A and MUX B. If the ALTS bit is ' 0 ', only the MUX A inputs are selected for sampling. If the ALTS bit is ' 1 ' and SMPI<3:0> $=0000$, on the first sample/convert sequence, the MUX A inputs are selected, and on the next acquire/convert sequence, the MUX B inputs are selected.
The CSCNA bit (ADCON2<10>) will allow the CH0 channel inputs to be alternately scanned across a selected number of analog inputs for the MUX A group. The inputs are selected by the ADCSSL register. If a particular bit in the ADCSSL register is ' 1 ', the corresponding input is selected. The inputs are always scanned from lower to higher numbered inputs, starting after each interrupt. If the number of inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs are unused.

dsPIC30F6010

20.4 Programming the Start of Conversion Trigger

The conversion trigger will terminate acquisition and start the requested conversions.
The $S S R C<2: 0>$ bits select the source of the conversion trigger.
The SSRC bits provide for up to 5 alternate sources of conversion trigger.
When $\operatorname{SSRC}<2: 0>=000$, the conversion trigger is under software control. Clearing the SAMP bit will cause the conversion trigger.
When SSRC<2:0> = 111 (Auto Start mode), the conversion trigger is under A/D clock control. The SAMC bits select the number of A / D clocks between the start of acquisition and the start of conversion. This provides the fastest conversion rates on multiple channels. SAMC must always be at least 1 clock cycle.

Other trigger sources can come from timer modules, Motor Control PWM module, or external interrupts.

Note: To operate the A/D at the maximum specified conversion speed, the Auto Convert Trigger option should be selected (SSRC $=111$) and the Auto Sample Time bits shoud be set to 1 TAD (SAMC = 00001). This configuration will give a total conversion period (sample + convert) of 13 TAD.
The use of any other conversion trigger will result in additional TAD cycles to synchronize the external event to the A/D.

20.5 Aborting a Conversion

Clearing the ADON bit during a conversion will abort the current conversion and stop the sampling sequencing. The ADCBUF will not be updated with the partially completed A/D conversion sample. That is, the ADCBUF will continue to contain the value of the last completed conversion (or the last value written to the ADCBUF register).
If the clearing of the ADON bit coincides with an auto start, the clearing has a higher priority.
After the A/D conversion is aborted, a 2 TAD wait is required before the next sampling may be started by setting the SAMP bit.

If sequential sampling is specified, the A/D will continue at the next sample pulse which corresponds with the next channel converted. If simultaneous sampling is specified, the A/D will continue with the next multi-channel group conversion sequence.

20.6 Selecting the A/D Conversion Clock

The A/D conversion requires 12 TAD. The source of the A/D conversion clock is software selected using a six bit counter. There are 64 possible options for TAD.

EQUATION 20-1: A/D CONVERSION CLOCK

$$
\begin{gathered}
\mathrm{TAD}=\mathrm{TCY} *(0.5 *(\mathrm{ADCS}<5: 0>+1)) \\
\mathrm{ADCS}<5: 0>=2 \frac{\mathrm{TAD}}{\mathrm{TCY}}-1
\end{gathered}
$$

The internal RC oscillator is selected by setting the ADRC bit.
For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 154 nsec (for VDD $=5 \mathrm{~V}$). Refer to the Electrical Specifications section for minimum TAD under other operating conditions.
Example 20-1 shows a sample calculation for the ADCS $<5: 0>$ bits, assuming a device operating speed of 30 MIPS.

EXAMPLE 20-1: A/D CONVERSION CLOCK CALCULATION

Minimum TAD $=154 \mathrm{nsec}$	
TCY	$=33 \mathrm{nsec}(30 \mathrm{MIPS})$
ADCS $<5: 0>$	$=2 \frac{\mathrm{TAD}}{\mathrm{TCY}}-1$
	$=2 \cdot \frac{154 \mathrm{nsec}}{33 \mathrm{nsec}}-1$
	$=8.33$
Therefore, Set ADCS $<5: 0>$ $=9$ Actual TAD $=\frac{\mathrm{TCY}}{2}(\mathrm{ADCS}<5: 0>+1)$ $=\frac{33 \mathrm{nsec}}{2}(9+1)$ $=165 \mathrm{nsec}$	

20.7 A/D Acquisition Requirements

The analog input model of the 10 -bit A/D converter is shown in Figure 20-2. The total sampling time for the A/D is a function of the internal amplifier settling time, device VDD and the holding capacitor charge time.

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The source impedance (Rs), the interconnect impedance (RIC), and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor CHOLD. The combined impedance of the analog sources must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D converter, the maximum recommended source impedance, Rs, is $5 \mathrm{k} \Omega$. After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

The user must allow at least 1 TAD period of sampling time, TSAMP, between conversions to allow each sample to be acquired. This sample time may be controlled manually in software by setting/clearing the SAMP bit, or it may be automatically controlled by the A/D converter. In an automatic configuration, the user must allow enough time between conversion triggers so that the minimum sample time can be satisfied. Refer to the Electrical Specifications for TAD and sample time requirements.

FIGURE 20-2: A/D CONVERTER ANALOG INPUT MODEL

Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if $\mathrm{Rs} \leq 5 \mathrm{k} \Omega$.

dsPIC30F6010

20.8 Module Power-down Modes

The module has 3 internal power modes. When the ADON bit is ' 1 ', the module is in Active mode; it is fully powered and functional. When ADON is ' 0 ', the module is in Off mode. The digital and analog portions of the circuit are disabled for maximum current savings. In order to return to the Active mode from Off mode, the user must wait for the ADC circuitry to stabilize.

20.9 A/D Operation During CPU Sleep and Idle Modes

20.9.1 A/D OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic ' 0 '.
If Sleep occurs in the middle of a conversion, the conversion is aborted. The converter will not continue with a partially completed conversion on exit from Sleep mode.
Register contents are not affected by the device entering or leaving Sleep mode.
The A/D module can operate during Sleep mode if the A/D clock source is set to RC (ADRC = 1). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is complete, the Done bit will be set and the result loaded into the ADCBUF register.

If the A/D interrupt is enabled, the device will wake-up from Sleep. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

20.9.2 A/D OPERATION DURING CPU IDLE MODE

The ADSIDL bit selects if the module will stop on Idle or continue on Idle. If ADSIDL $=0$, the module will continue operation on assertion of Idle mode. If ADSIDL = 1 , the module will stop on Idle.

20.10 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion and acquisition sequence is aborted. The values that are in the ADCBUF registers are not modified. The A/D result register will contain unknown data after a Power-on Reset.

20.11 Output Formats

The A/D result is 10-bits wide. The data buffer RAM is also 10-bits wide. The 10-bit data can be read in one of four different formats. The FORM<1:0> bits select the format. Each of the output formats translates to a 16-bit result on the data bus.
Write data will always be in right justified (integer) format.

FIGURE 20-3: A/D OUTPUT DATA FORMATS
RAM Contents:

Read to Bus:
Signed Fractional (1.15)

Fractional (1.15)

Signed Integer

Integer

20.12 Configuring Analog Port Pins

The use of the ADPCFG and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VoL) will be converted.
The A / D operation is independent of the state of the CHOSA<3:0>/CH0SB<3:0> bits and the TRIS bits.
When reading the PORT register, all pins configured as analog input channels will read as cleared.
Pins configured as digital inputs will not convert an ana\log input. Analog levels on any pin that is defined as a digital input (including the ANx pins), may cause the input buffer to consume current that exceeds the device specifications.

20.13 Connection Considerations

The analog inputs have diodes to VDD and Vss as ESD protection. This requires that the analog input be between VDD and Vss. If the input voltage exceeds this range by greater than 0.3 V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.
An external RC filter is sometimes added for antialiasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

	17.25	Special Function Registers Associated with the 10-bit A/D Converter																				
		The following table lists dsPIC30F 10-bit A/D Converter Special Function registers, including their addresses and formats. All unimplemented registers and/or bits within a register read as zeros.																				
	Table 17-10: ADC Register Map																					
	File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	States	
	INTCON1	0080	NSTDIS	-	-	-	-	OVATE	OVBTE	COVTE	-	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000	0000	0000	0000
	INTCON2	0082	ALTIVT	-	-	-	-	-	-	-	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000	0000	0000	0000
	IFSO	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI11F	T31F	T21F	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INTO	0000	0000	0000	0000
	IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	UITXIE	U1RXIE	SPI1IE	T31E	T2IE	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000	0000	0000	0000
	IPC2	0098	ADIP<2:0>				-	U1TXIP<2:0>			-	U1RXIP<2:0>			-	SPI11P<2:0>			0100	0100	0100	0100
	ADCBUFO	0280	ADC Data Buffer 0																uuuu	uuuu	uuuu	uuuu
	ADCBUF1	0282	ADC Data Buffer 1																uuuu	uuuu	uuuu	uuuu
	ADCBUF2	0284	ADC Data Buffer 2																uuuu	uuuu	uuuu	uuuu
	ADCBUF3	0286	ADC Data Buffer 3																uuuu	uuuu	uuuu	uuuu
	ADCBUF4	0288	ADC Data Buffer 4																uuuu	uuuu	uuuu	uuu
	ADCBUF5	028A	ADC Data Buffer 5																uuuu	uuuu	uuuu	uuuu
	ADCBUF6	028C	ADC Data Buffer 6																uuuu	uuuu	uuuu	uuuu
	ADCBUF7	028E	ADC Data Buffer 7																uuuu	uuuu	uuuu	uuuu
	ADCBUF8	0290	ADC Data Buffer 8																uuuu	uuuu	uuuu	uuuu
	ADCBUF9	0292	ADC Data Buffer 9																uuuu	uuuu	uuuu	uuuu
	ADCBUFA	0294	ADC Data Buffer 10																uuuu	uuuu	uuuu	uuuu
	ADCBUFB	0296	ADC Data Buffer 11																uuuu	uuuu	uuuu	uuuu
	ADCBUFC	0298	ADC Data Buffer 12																uuuu	uuuu	uuuu	uuuu
	ADCBUFD	029A	ADC Data Buffer 13																uuuu	uuuu	uuuu	uuuu
	ADCBUFE	029C	ADC Data Buffer 14																uuuu	uuuu	uuuu	uuuu
	ADCBUFF	029E	ADC Data Buffer 15																uuuu	uuuu	uuuu	uuuu
	ADCON1	02A0	ADON	ADFRZ	ADSIDL	-	-	-	FORM	M[1:0]	SSRC[2:0]			-	SIMSAM	ASAM	SAMP	CONV	0000	0000	0000	0000
	ADCON2	02A2	VCFG[2:0]			OFFCAL	-	CSCNA	CHPS[1:0]		BUFS	-	SMPI[3:0]				BUFM	ALTS	0000	0000	0000	0000
$\begin{aligned} & \ominus \\ & \sim \end{aligned}$	ADCON3	02A4	-	- -	-	SAMC[4:0]					ADRC	-	ADCS[5:0]						0000	0000	0000	0000
OO	ADCHS	02A6	CHXNB[1:0]		CHXSB	CHONB	CHOSB[3:0]				CHXNA[1:0]		CHXSA	CHONA	CHOSA[3:0]				0000	0000	0000	0000
3	ADPCFG	02A8	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFGO	0000	0000	0000	0000
$\overline{\bar{\circ}}$	ADCSSL	02AA	ADC Input Scan Select Register																0000	0000	0000	0000
음	Legend: $\mathrm{u}=$ unknown ${ }^{\text {a }}$																					
$\frac{0}{0}$	Note:	All interrupt sources and their associated control bits may not be available on a particular device. Refer to the device data sheet for details.																				

17.2 Control Registers

The A/D module has six Control and Status registers. These registers are:

- ADCON1: A/D Control Register 1
- ADCON2: A/D Control Register 2
- ADCON3: A/D Control Register 3
- ADCHS: A/D Input Channel Select Register
- ADPCFG: A/D Port Configuration Register
- ADCSSL: A/D Input Scan Selection Register

The ADCON1, ADCON2 and ADCON3 registers control the operation of the A/D module. The ADCHS register selects the input pins to be connected to the S/H amplifiers. The ADPCFG register configures the analog input pins as analog inputs or as digital I/O. The ADCSSL register selects inputs to be sequentially scanned.

17.3 A/D Result Buffer

The module contains a 16 -word dual port RAM, called ADCBUF, to buffer the A/D results. The 16 buffer locations are referred to as ADCBUFO, ADCBUF1, ADCBUF2,, ADCBUFE, ADCBUFF.

Note: The A/D result buffer is a read only buffer.

Register 17-1: ADCON1: A/D Control Register 1

Upper Byte:							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON	-	ADSIDL	-	-	-	FOR	1:0>
bit 15 bit 8							

Lower Byte: R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC, HS	R/C-0 HC, HS
SSRC<2:0>		-	SIMSAM	ASAM	SAMP	DONE	
bit 7					bit 0		

bit 15 ADON: A/D Operating Mode bit $1=A / D$ converter module is operating $0=A / D$ converter is off
bit 14 Unimplemented: Read as ' 0 '
bit 13 ADSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode $0=$ Continue module operation in Idle mode
bit 12-10 Unimplemented: Read as ' 0 '
bit 9-8 FORM<1:0>: Data Output Format bits
11 = Signed Fractional (DOUT = sddd dddd dd00 0000)
$10=$ Fractional (DOUT = dddd dddd ddoo 0000)
$01=$ Signed Integer (DOUT = ssss sssd dddd dddd)
$00=$ Integer (DOUT $=0000$ 00dd dddd dddd)
bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits
111 = Internal counter ends sampling and starts conversion (auto convert)
$110=$ Reserved
101 = Reserved
$100=$ Reserved
011 = Motor Control PWM interval ends sampling and starts conversion
010 = GP Timer3 compare ends sampling and starts conversion
001 = Active transition on INT0 pin ends sampling and starts conversion
$000=$ Clearing SAMP bit ends sampling and starts conversion
bit 4 Unimplemented: Read as ' 0 '
bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS = 01 or 1 x)
1 = Samples $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ simultaneously (when $\mathrm{CHPS}=1 \mathrm{x}$)
or
Samples CH0 and CH1 simultaneously (when CHPS = 01)
$0=$ Samples multiple channels individually in sequence
bit 2 ASAM: A/D Sample Auto-Start bit
1 = Sampling begins immediately after last conversion completes. SAMP bit is auto set
$0=$ Sampling begins when SAMP bit set

Register 17-1: ADCON1: A/D Control Register 1 (Continued)

bit 1 SAMP: A/D Sample Enable bit
1 = At least one A/D sample/hold amplifier is sampling
$0=A / D$ sample/hold amplifiers are holding
When ASAM $=0$, writing ' 1 ' to this bit will start sampling
When SSRC $=000$, writing ' 0 ' to this bit will end sampling and start conversion
bit $0 \quad$ DONE: A/D Conversion Status bit (Rev. B silicon or later)
$1=A / D$ conversion is done
$0=A / D$ conversion is NOT done
Cleared by software or start of a new conversion
Clearing this bit will not effect any operation in progress

Legend:		
$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$H C=$ Hardware clear	$H S=$ Hardware set	$C=$ Clearable by software
$-n=$ Value at POR	$' 1$ ' = Bit is set	' 0 ' = Bit is cleared $\quad x=$ Bit is unknown

Register 17-2: ADCON2: A/D Control Register 2

| Upper Byte:
 R/W-0 | R/W-0 | R/W-0 | U-0 | U-0 | R/W-0 | R/W-0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | R/W-0

Lower Byte: R-0		$\mathrm{U}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0 \quad \mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$	$\mathrm{R} / \mathrm{W}-0$
BUFS	-	$\mathrm{SMPI}<3: 0>$		BUFM	ALTS		
bit 7				bit 0			

bit 15-13 VCFG<2:0>: Voltage Reference Configuration bits

	A/D VrefH	A/D VreFL
000	AVDD	AVSS
001	External VREF+ pin	AVSS
010	AVDD	External VREF- pin
011	External VREF+ pin	External VREF- pin
1 xx	AVDD	AVSS

bit 12 Reserved: User should write ' 0 ' to this location
bit 11 Unimplemented: Read as ' 0 '
bit 10 CSCNA: Scan Input Selections for $\mathrm{CH} 0+\mathrm{S} / \mathrm{H}$ Input for MUX A Input Multiplexer Setting bit
1 = Scan inputs
$0=$ Do not scan inputs
bit 9-8 CHPS<1:0>: Selects Channels Utilized bits
$1 \mathrm{x}=$ Converts $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ and CH 3
01 = Converts CH 0 and CH 1
$00=$ Converts CH0
When SIMSAM bit (ADCON1<3>) $=0$ multiple channels sampled sequentially
When SMSAM bit (ADCON1<3>) = 1 multiple channels sampled as in CHPS<1:0>
bit 7 BUFS: Buffer Fill Status bit
Only valid when BUFM $=1$ (ADRES split into 2×8-word buffers).
$1=A / D$ is currently filling buffer $0 \times 8-0 \times F$, user should access data in $0 \times 0-0 \times 7$
$0=A / D$ is currently filling buffer $0 \times 0-0 \times 7$, user should access data in $0 \times 8-0 \times F$
bit 6 Unimplemented: Read as ' 0 '
bit 5-2 SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits
1111 = Interrupts at the completion of conversion for each 16th sample/convert sequence
$1110=$ Interrupts at the completion of conversion for each 15th sample/convert sequence
....
0001 = Interrupts at the completion of conversion for each 2nd sample/convert sequence
$0000=$ Interrupts at the completion of conversion for each sample/convert sequence
bit 1 BUFM: Buffer Mode Select bit
1 = Buffer configured as two 8-word buffers ADCBUF(15...8), ADCBUF(7...0)
0 = Buffer configured as one 16-word buffer ADCBUF(15...0.)
bit $0 \quad$ ALTS: Alternate Input Sample Mode Select bit
1 = Uses MUX A input multiplexer settings for first sample, then alternate between MUX B and MUX A input multiplexer settings for all subsequent samples
0 = Always use MUX A input multiplexer settings

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

Register 17-3: ADCON3: A/D Control Register 3

Upper Byte:							
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	-	-	SAMC<4:0>				
bit 15 bit 8							

Lower Byte:							
R/W-0	$\mathrm{U}-0$	$\mathrm{R} / \mathrm{W}-0$	R/W-0				
ADRC	-			ADCS $<5: 0>$			
bit 7						bit 0	

bit 15-13 Unimplemented: Read as ' 0 '
bit 12-8 SAMC<4:0>: Auto-Sample Time bits
11111 = 31 TAD
$00001=1$ TAD
$00000=0$ TAD (only allowed if performing sequential conversions using more than one S / H amplifier)
bit 7 ADRC: A/D Conversion Clock Source bit
$1=A / D$ internal RC clock
0 = Clock derived from system clock
bit 6 Unimplemented: Read as ' 0 '
bit 5-0 ADCS<5:0>: A/D Conversion Clock Select bits $111111=\mathrm{TCY} / 2 \cdot(\mathrm{ADCS}<5: 0>+1)=32 \cdot \mathrm{TCY}$
$000001=\mathrm{TCY} / 2 \cdot(\operatorname{ADCS}<5: 0>+1)=$ TCY
$000000=\mathrm{TCY} / 2 \cdot($ ADCS $<5: 0>+1)=\mathrm{TCY} / 2$

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

Register 17-4: ADCHS: A/D Input Select Register

Upper Byte: R/W-0	R/W-0						
CH123NB<1:0>	CH123SB	CH0NB		$C H 0 S B<3: 0>$			
bit 15						bit 8	

| Lower Byte:
 R/W-0\quad R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 |
| :--- | :--- | :---: | :---: | :---: | :---: | ---: | ---: |
| CH123NA<1:0> | CH123SA | CH0NA | | CH0SA<3:0> | | |
| bit 7 7 | | | | | | |

bit 15-14 $\mathbf{C H 1 2 3 N B}<1: 0>$: Channel 1, 2, 3 Negative Input Select for MUX B Multiplexer Setting bits Same definition as bits 6-7 (Note)
bit 13 CH123SB: Channel 1, 2, 3 Positive Input Select for MUX B Multiplexer Setting bit Same definition as bit 5 (Note)
bit 12 CHONB: Channel 0 Negative Input Select for MUX B Multiplexer Setting bit Same definition as bit 4 (Note)
bit 11-8 CH0SB<3:0>: Channel 0 Positive Input Select for MUX B Multiplexer Setting bits Same definition as bits 3-0 (Note)
bit 7-6 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for MUX A Multiplexer Setting bits $11=\mathrm{CH} 1$ negative input is AN9, CH 2 negative input is $\mathrm{AN} 10, \mathrm{CH} 3$ negative input is AN11 $10=\mathrm{CH} 1$ negative input is AN6, CH 2 negative input is AN7, CH 3 negative input is AN8 $0 \mathrm{x}=\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ negative input is Vref-
bit 5 CH123SA: Channel 1, 2, 3 Positive Input Select for MUX A Multiplexer Setting bit $1=\mathrm{CH} 1$ positive input is $\mathrm{AN} 3, \mathrm{CH} 2$ positive input is $\mathrm{AN} 4, \mathrm{CH} 3$ positive input is AN5 $0=\mathrm{CH} 1$ positive input is $\mathrm{AN0}, \mathrm{CH} 2$ positive input is $\mathrm{AN} 1, \mathrm{CH} 3$ positive input is AN2
bit 4 CHONA: Channel 0 Negative Input Select for MUX A Multiplexer Setting bit 1 = Channel 0 negative input is AN1 $0=$ Channel 0 negative input is VREF-
bit 3-0 CHOSA<3:0>: Channel 0 Positive Input Select for MUX A Multiplexer Setting bits 1111 = Channel 0 positive input is AN15 $1110=$ Channel 0 positive input is AN14 1101 = Channel 0 positive input is AN13
\|
||
||
0001 = Channel 0 positive input is AN1
$0000=$ Channel 0 positive input is AN0

Note: The analog input multiplexer supports two input setting configurations, denoted MUX A and MUX B. ADCHS $<15: 8>$ determine the settings for MUX B, and ADCHS $<7: 0>$ determine the settings for MUX A. Both sets of control bits function identically.

Note: The ADCHS register description and functionality will vary depending on the number of A/D inputs available on the selected device. Please refer to the specific device data sheet for additional details on this register.

Legend:

$\mathrm{R}=$ Readable bit	$\mathrm{W}=$ Writable bit	$\mathrm{U}=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared $\quad x=$ Bit is unknown

Register 17-5: ADPCFG: A/D Port Configuration Register

Upper Byte: R/W-0	R/W-0						
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8
bit 15					bit 8		

Lower Byte: R/W-0	R/W-0						
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							

bit 15-0 PCFG<15:0>: Analog Input Pin Configuration Control bits
1 = Analog input pin in Digital mode, port read input enabled, A/D input multiplexer input connected to AVss
$0=$ Analog input pin in Analog mode, port read input disabled, A/D samples pin voltage

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-\mathrm{n}=$ Value at POR	$' 1$ ' = Bit is set	$' 0$ ' = Bit is cleared

Register 17-6: ADCSSL: A/D Input Scan Select Register

Upper Byte: R/W-0	R/W-0						
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							

Lower Byte: R/W-0	R/W-0						
CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0
bit 7							

bit 15-0 CSSL<15:0>: A/D Input Pin Scan Selection bits
1 = Select ANx for input scan
0 = Skip ANx for input scan

Legend:

$R=$ Readable bit	$W=$ Writable bit	$U=$ Unimplemented bit, read as ' 0 '
$-n=$ Value at POR	$' 1 '=$ Bit is set	$' 0 '=$ Bit is cleared $\quad x=$ Bit is unknown

17.4 A/D Terminology and Conversion Sequence

Figure 17-2 shows a basic conversion sequence and the terms that are used. A sampling of the analog input pin voltage is performed by sample and hold S / H amplifiers. The S / H amplifiers are also called S / H channels. The 10-bit A / D converter has four total S / H channels, designated $\mathrm{CH} 0-\mathrm{CH} 3$. The S / H channels are connected to the analog input pins via the analog input multiplexer. The analog input multiplexer is controlled by the ADCHS register. There are two sets of multiplexer control bits in the ADCHS register that function identically. These two sets of control bits allow two different analog input multiplexer configurations to be programmed, which are called MUX A and MUX B. The A/D converter can optionally switch between the MUX A and MUX B configurations between conversions. The A/D converter can also optionally scan through a series of analog inputs.
Sample time is the time that the A/D module's S / H amplifier is connected to the analog input pin. The sample time may be started manually by setting the SAMP bit (ADCON1<1>) or started automatically by the A/D converter hardware. The sample time is ended manually by clearing the SAMP control bit in the user software or automatically by a conversion trigger source.
Conversion time is the time required for the A/D converter to convert the voltage held by the S/H amplifier. The A/D is disconnected from the analog input pin at the end of the sample time. The A/D converter requires one A/D clock cycle (TAD) to convert each bit of the result plus one additional clock cycle. A total of 12 TAD cycles are required to perform the complete conversion. When the conversion time is complete, the result is loaded into one of 16 A/D Result registers (ADCBUF0...ADCBUFF), the S/H can be reconnected to the input pin, and a CPU interrupt may be generated.
The sum of the sample time and the A/D conversion time provides the total conversion time. There is a minimum sample time to ensure that the S/H amplifier will give the desired accuracy for the A/D conversion (see Section 17.16 "A/D Sampling Requirements"). Furthermore, there are multiple input clock options for the A/D converter. The user must select an input clock option that does not violate the minimum TAD specification.

Figure 17-2: A/D Sample/Conversion Sequence

The 10-bit A/D converter allows many options for specifying the sample/convert sequence. The sample/convert sequence can be very simple, such as the one shown in Figure 17-3. The example in Figure 17-3 uses only one S/H amplifier. A more elaborate sample/convert sequence performs multiple conversions using more than one S/H amplifier. The 10-bit A/D converter can use two S / H amplifiers to perform two conversions in a sample/convert sequence or four S / H amplifiers with four conversions. The number of S / H amplifiers, or channels per sample, used in the sample/convert sequence is determined by the CHPS control bits.

A sample/convert sequence that uses multiple S / H channels can be simultaneously sampled or sequentially sampled, as controlled by the SIMSAM bit (ADCON1<3>). Simultaneously sampling multiple signals ensures that the snapshot of the analog inputs occurs at precisely the same time for all inputs. Sequential sampling takes a snapshot of each analog input just before conversion starts on that input, and the sampling of multiple inputs is not correlated.

Figure 17-3: Simultaneous and Sequential Sampling

The start time for sampling can be controlled in software by setting the SAMP control bit. The start of the sampling time can also be controlled automatically by the hardware. When the A/D converter operates in the Auto-Sample mode, the S/H amplifier(s) is reconnected to the analog input pin at the end of the conversion in the sample/convert sequence. The auto-sample function is controlled by the ASAM control bit (ADCON1<2>).
The conversion trigger source ends the sampling time and begins an A / D conversion or a sample/convert sequence. The conversion trigger source is selected by the SSRC control bits. The conversion trigger can be taken from a variety of hardware sources, or can be controlled manually in software by clearing the SAMP control bit. One of the conversion trigger sources is an auto-conversion. The time between auto-conversions is set by a counter and the A/D clock. The Auto-Sample mode and auto-conversion trigger can be used together to provide endless automatic conversions without software intervention.
An interrupt may be generated at the end of each sample/convert sequence or multiple sample/convert sequences as determined by the value of the SMPI control bits ADCON2<5:2>. The number of sample/convert sequences between interrupts can vary between 1 and 16. The user should note that the A/D conversion buffer holds 16 results when the SMPI value is selected. The total number of conversion results between interrupts is the product of the channels per sample and the SMPI value. The total number of conversions between interrupts should not exceed the buffer length.

17.5 A/D Module Configuration

The following steps should be followed for performing an A/D conversion:

1. Configure the A / D module

- Select port pins as analog inputs ADPCFG<15:0>
- Select voltage reference source to match expected range on analog inputs ADCON2<15:13>
- Select the analog conversion clock to match desired data rate with processor clock ADCON3<5:0>
- Determine how many S / H channels will be used ADCON2<9:8> and ADPCFG<15:0>
- Determine how sampling will occur ADCON1<3> and ADCSSL<15:0>
- Determine how inputs will be allocated to S / H channels $\mathrm{ADCHS}<15: 0>$
- Select the appropriate sample/conversion sequence ADCON1<7:0> and ADCON3<12:8>
- Select how conversion results are presented in the buffer ADCON1<9:8>
- Select interrupt rate ADCON2<5:9>
- Turn on A/D module ADCON1<15>

2. Configure A / D interrupt (if required)

- Clear ADIF bit
- Select A/D interrupt priority

The options for each configuration step are described in the subsequent sections.

17.6 Selecting the Voltage Reference Source

The voltage references for A/D conversions are selected using the VCFG<2:0> control bits (ADCON2<15:13>). The upper voltage reference (VREFH) and the lower voltage reference (VREFL) may be the internal AVDD and AVSS voltage rails or the VreF+ and Vref- input pins.
The external voltage reference pins may be shared with the AN0 and AN1 inputs on low pin count devices. The A/D converter can still perform conversions on these pins when they are shared with the Vref+ and Vref- input pins.
The voltages applied to the external reference pins must meet certain specifications. Refer to the "Electrical Specifications" section of the device data sheet for further details.

Note: External Vref+ amd Vref- must be selected for conversion rates above 500 ksps . See Section 17.22 "A/D Conversion Speeds" for further details.

17.7 Selecting the A/D Conversion Clock

The A/D converter has a maximum rate at which conversions may be completed. An analog module clock, TAD, controls the conversion timing. The A/D conversion requires 12 clock periods (12 TAD). The A/D clock is derived from the device instruction clock or internal RC clock source.
The period of the A/D conversion clock is software selected using a 6-bit counter. There are 64 possible options for TAD, specified by the ADCS $<5: 0>$ bits (ADCON3<5:0>). Equation 17-1 gives the TAD value as a function of the ADCS control bits and the device instruction cycle clock period, Tcy.

Equation 17-1: A/D Conversion Clock Period

$$
\begin{aligned}
& T A D=\frac{T C Y(A D C S+1)}{2} \\
& A D C S=\frac{2 T A D}{T C Y}-1
\end{aligned}
$$

For correct A / D conversions, the A / D conversion clock (TAD) must be selected to ensure a minimum TAD time of 83.33 nsec (see Section 17.22 "A/D Conversion Speeds" for further details).

The A/D converter has a dedicated internal RC clock source that can be used to perform conversions. The internal RC clock source should be used when A/D conversions are performed while the dsPIC30F is in Sleep mode. The internal RC oscillator is selected by setting the ADRC bit (ADCON3<7>). When the ADRC bit is set, the ADCS<5:0> bits have no effect on the A/D operation.

17.8 Selecting Analog Inputs for Sampling

All Sample-and-Hold Amplifiers have analog multiplexers (see Figure 17-1) on both their non-inverting and inverting inputs to select which analog input(s) are sampled. Once the sample/convert sequence is specified, the ADCHS bits determine which analog inputs are selected for each sample.
Additionally, the selected inputs may vary on an alternating sample basis or may vary on a repeated sequence of samples.
The same analog input can be connected to two or more sample and hold channels to improve conversion rates.

Note: Different devices will have different numbers of analog inputs. Verify the analog input availability against the device data sheet.

17.8.1 Configuring Analog Port Pins

The ADPCFG register specifies the input condition of device pins used as analog inputs.
A pin is configured as analog input when the corresponding PCFGn bit (ADPCFG<n>) is clear. The ADPCFG register is clear at Reset, causing the A/D input pins to be configured for analog input by default at Reset.
When configured for analog input, the associated port I/O digital input buffer is disabled so it does not consume current.
The ADPCFG register and the TRISB register control the operation of the A/D port pins.
The port pins that are desired as analog inputs must have their corresponding TRIS bit set, specifying port input. If the I/O pin associated with an A/D input is configured as an output, TRIS bit is cleared and the ports digital output level (VOH or Vol) will be converted. After a device Reset, all TRIS bits are set.
A pin is configured as digital I/O when the corresponding PCFGn bit (ADPCFG<n>) is set. In this configuration, the input to the analog multiplexer is connected to AVss.

Note 1: When reading the A/D Port register, any pin configured as an analog input reads as a '0'.
2: Analog levels on any pin that is defined as a digital input (including the AN15:AN0 pins) may cause the input buffer to consume current that is out of the device's specification.

17.8.2 Channel 0 Input Selection

Channel 0 is the most flexible of the $4 \mathrm{~S} / \mathrm{H}$ channels in terms of selecting analog inputs.
The user may select any of the up to 16 analog inputs as the input to the positive input of the channel. The $\mathrm{CHOSA}<3: 0>$ bits (ADCHS $<3: 0>$) normally select the analog input for the positive input of channel 0 .
The user may select either Vref- or AN1 as the negative input of the channel. The CH0NA bit (ADCHS<4>) normally selects the analog input for the negative input of channel 0 .

17.8.2.1 Specifying Alternating Channel 0 Input Selections

The ALTS bit (ADCON2<0>) causes the module to alternate between two sets of inputs that are selected during successive samples.
The inputs specified by $\mathrm{CH} 0 \mathrm{SA}<3: 0>, \mathrm{CHONA}, \mathrm{CHXSA}$ and $\mathrm{CHXNA}<1: 0>$ are collectively called the MUX A inputs. The inputs specified by $\mathrm{CH} 0 \mathrm{SB}<3: 0>, \mathrm{CHONB}, \mathrm{CHXSB}$ and $\mathrm{CHXNB}<1: 0>$ are collectively called the MUX B inputs. When the ALTS bit is ' 1 ', the module will alternate between the MUX A inputs on one sample and the MUX B inputs on the subsequent sample.
For channel 0 , if the ALTS bit is ' 0 ', only the inputs specified by CHOSA<3:0> and CHONA are selected for sampling.

If the ALTS bit is ' 1 ', on the first sample/convert sequence for channel 0 , the inputs specified by $\mathrm{CHOSA}<3: 0>$ and CHONA are selected for sampling. On the next sample convert sequence for channel 0 , the inputs specified by $\mathrm{CH} 0 \mathrm{SB}<3: 0>$ and CHONB are selected for sampling. This pattern will repeat for subsequent sample conversion sequences.
Note that if multiple channels (CHPS $=01$ or $1 x$) and simultaneous sampling (SIMSAM $=1$) are specified, alternating inputs will change every sample because all channels are sampled on every sample time. If multiple channels (CHPS = 01 or 1 x) and sequential sampling (SIMSAM $=0$) are specified, alternating inputs will change only on each sample of a particular channel.

17.8.2.2 Scanning Through Several Inputs with Channel 0

Channel 0 has the ability to scan through a selected vector of inputs. The CSCNA bit (ADCON2<10>) enables the CH 0 channel inputs to be scanned across a selected number of analog inputs. When CSCNA is set, the $\mathrm{CH} 0 \mathrm{SA}<3: 0>$ bits are ignored.
The ADCSSL register specifies the inputs to be scanned. Each bit in the ADCSSL register corresponds to an analog input. Bit 0 corresponds to ANO, bit 1 corresponds to AN1 and so on. If a particular bit in the ADCSSL register is ' 1 ', the corresponding input is part of the scan sequence. The inputs are always scanned from lower to higher numbered inputs, starting at the first selected channel after each interrupt occurs.

Note: If the number of scanned inputs selected is greater than the number of samples taken per interrupt, the higher numbered inputs will not be sampled.

The ADCSSL bits only specify the input of the positive input of the channel. The CHONA bit still selects the input of the negative input of the channel during scanning.
If the ALTS bit is ' 1 ', the scanning only applies to the MUX A input selection. The MUX B input selection, as specified by the $\mathrm{CH} 0 \mathrm{SB}<3: 0>$, will still select the alternating channel 0 input. When the input selections are programmed in this manner, the channel 0 input will alternate between a set of scanning inputs specified by the ADCSSL register and a fixed input specified by the CHOSB bits.

17.8.3 Channel 1, 2 and 3 Input Selection

Channel 1, 2 and 3 can sample a subset of the analog input pins. Channel 1, 2 and 3 may select one of two groups of 3 inputs.
The CHXSA bit (ADCHS<5>) selects the source for the positive inputs of channel 1, 2 and 3.
Clearing CHXSA selects AN0, AN1 and AN2 as the analog source to the positive inputs of channel 1, 2 and 3, respectively. Setting CHXSA selects AN3, AN4 and AN5 as the analog source.
The $\mathrm{CHXNA}<1: 0>$ bits (ADCHS $<7: 6>$) select the source for the negative inputs of channel 1, 2 and 3.
Programming CHXNA $=0 \mathrm{x}$, selects VREF- as the analog source for the negative inputs of channel 1, 2 and 3. Programming CHXNA $=10$ selects AN6, AN7 and AN8 as the analog source to the negative inputs of channel 1,2 and 3 respectively. Programming CHXNA $=11$ selects AN9, AN10 and AN11 as the analog source.

17.8.3.1 Selecting Multiple Channels for a Single Analog Input

The analog input multiplexer can be configured so that the same input pin is connected to two or more sample and hold channels. The A/D converts the value held on one S/H channel, while the second S/H channel acquires a new input sample.

17.8.3.2 Specifying Alternating Channel 1, 2 and 3 Input Selections

As with the channel 0 inputs, the ALTS bit (ADCON2<0>) causes the module to alternate between two sets of inputs that are selected during successive samples for channel 1,2 and 3 .
The MUX A inputs specified by CHXSA and CHXNA<1:0> always select the input when ALTS $=0$.

The MUX A inputs alternate with the MUX B inputs specified by CHXSB and CHXNB<1:0> when ALTS $=1$.

17.9 Enabling the Module

When the ADON bit (ADCON $1<15>$) is ' 1 ', the module is in Active mode and is fully powered and functional.

When ADON is ' 0 ', the module is disabled. The digital and analog portions of the circuit are turned off for maximum current savings.
In order to return to the Active mode from the Off mode, the user must wait for the analog stages to stabilize. For the stabilization time, refer to the Electrical Characteristics section of the device data sheet.

Note: The SSRC<2:0>, SIMSAM, ASAM, CHPS<1:0>, SMPI<3:0>, BUFM and ALTS bits, as well as the ADCON3 and ADCSSL registers, should not be written to while ADON =1. This would lead to indeterminate results.

17.10 Specifying the Sample/Conversion Sequence

The 10-bit A/D module has 4 sample/hold amplifiers and one A/D converter. The module may perform 1, 2 or 4 input samples and A/D conversions per sample/convert sequence.

17.10.1 Number of Sample/Hold Channels

The CHPS $<1: 0>$ control bits (ADCON2<9:8>) are used to select how many S/H amplifers are used by the A/D module during sample/conversion sequences. The following three options may be selected:

- CHO only
- CH 0 and CH 1
- CH0, CH1, CH2, CH3

The CHPS control bits work in conjunction with the SIMSAM (simultaneous sample) control bit (ADCON1<3>).

17.10.2 Simultaneous Sampling Enable

Some applications may require that multiple signals are sampled at the exact same time instance. The SIMSAM control bit (ADCON1<3>) works in conjunction with the CHPS control bits and controls the sample/convert sequence for multiple channels as shown in Table 17-1. The SIMSAM control bit has no effect on the module operation if CHPS $<1: 0>=00$. If more than one S/H amplifier is enabled by the CHPS control bits and the SIMSAM bit is ' 0 ', the two or four selected channels are sampled and converted sequentially with two or four sampling periods. If the SIMSAM bit is ' 1 ', two or four selected channels are sampled simultaneously with one sampling period. The channels are then converted sequentially.

Table 17-1: Sample/Conversion Control Options

CHPS<1:0>	SIMSAM	Sample/Conversion Sequence	\# of Sample/ Convert Cycles to Complete	Example
00	x	Sample CH0, Convert CH0	1	Figure 17-4, Figure 17-5, Figure 17-6, Figure 17-7, Figure 17-10, Figure 17-11, Figure 17-14, Figure 17-15
01	0	Sample CH0, Convert CH0 Sample CH1, Convert CH1	2	
1 x	0	Sample CH0, Convert CH0 Sample CH1, Convert CH1 Sample CH2, Convert CH2 Sample CH3, Convert CH3	4	Figure 17-9, Figure 17-13, Figure 17-20
01	1	Sample CH0, CH1 simultaneously Convert CH0 Convert CH1	1	Figure 17-18
1 l	1	Sample CH0, CH1, CH2, CH3 simultaneously Convert CH0 Convert CH1 Convert CH2 Convert CH3	1	Figure 17-8 Figure 17-12,
				Figure 17-16, Figure 17-17, Figure 17-9,

17.11 How to Start Sampling

17.11.1 Manual

Setting the SAMP bit (ADCON1<1>) causes the A/D to begin sampling. One of several options can be used to end sampling and complete the conversions. Sampling will not resume until the SAMP bit is once again set. For an example, see Figure 17-4.

17.11.2 Automatic

Setting the ASAM bit (ADCON1<2>) causes the A/D to automatically begin sampling a channel whenever a conversion is not active on that channel. One of several options can be used to end sampling and complete the conversions. If the SIMSAM bit specifies sequential sampling, sampling on a channel resumes after the conversion of that channel completes. If the SIMSAM bit specifies simultaneous sampling, sampling on a channel resumes after the conversion of all channels completes. For an example, see Figure 17-5.

17.12 How to Stop Sampling and Start Conversions

The conversion trigger source will terminate sampling and start a selected sequence of conversions. The SSRC<2:0> bits (ADCON1<7:5>) select the source of the conversion trigger.

Note: The available conversion trigger sources may vary depending on the dsPIC30F device variant. Please refer to the specific device data sheet for the available conversion trigger sources.

Note: The SSRC selection bits should not be changed when the A/D module is enabled. If the user wishes to change the conversion trigger source, the A/D module should be disabled first by clearing the ADON bit (ADCON1<15>).

17.12.1 Manual

When SSRC<2:0> = 000, the conversion trigger is under software control. Clearing the SAMP bit (ADCON1<1>) starts the conversion sequence.
Figure $17-4$ is an example where setting the SAMP bit initiates sampling and clearing the SAMP bit terminates sampling and starts conversion. The user software must time the setting and clearing of the SAMP bit to ensure adequate sampling time of the input signal. See Example 17-1 for code example.

Figure 17-4: Converting 1 Channel, Manual Sample Start, Manual Conversion Start

Example 17-1: Converting 1 Channel, Manual Sample Start, Manual Conversion Start Code

```
ADPCFG = 0xFFFB;
// all PORTB = Digital; RB2 = analog
ADCON1 = 0x0000;
// SAMP bit = 0 ends sampling ...
// and starts converting
ADCHS = 0x0002; // Connect RB2/AN2 as CH0 input ..
// in this example RB2/AN2 is the input
ADCSSL = 0;
ADCON3 = 0x0002; // Manual Sample, Tad = internal 2 Tcy
ADCON2 = 0;
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
    {
    ADCON1bits.SAMP = 1; // start sampling ...
    DelayNmSec(100); // for 100 mS
    ADCON1bits.SAMP = 0; // start Converting
    while (!ADCON1bits.DONE); // conversion done?
    ADCValue = ADCBUF0; // yes then get ADC value
    } // repeat
```

Figure 17-5 is an example where setting the ASAM bit initiates automatic sampling and clearing the SAMP bit terminates sampling and starts conversion. After the conversion completes, the module will automatically return to a sampling state. The SAMP bit is automatically set at the start of the sample interval. The user software must time the clearing of the SAMP bit to ensure adequate sampling time of the input signal, understanding that the time between clearing of the SAMP bit includes the conversion time as well as the sampling time. See Example 17-2 for code example.

Figure 17-5: Converting 1 Channel, Automatic Sample Start, Manual Conversion Start

Example 17-2: Converting 1 Channel, Automatic Sample Start, Manual Conversion Start Code

```
ADPCFG = 0xFF7F;
// all PORTB = Digital but RB7 = analog
ADCON1 = 0x0004;
// ASAM bit = 1 implies sampling ..
// starts immediately after last
// conversion is done
ADCHS = 0x0007
// Connect RB7/AN7 as CH0 input ..
// in this example RB7/AN7 is the input
ADCSSL = 0;
ADCON3 = 0x0002; // Sample time manual, Tad = internal 2 Tcy
ADCON2 = 0;
ADCON1bits.ADON = 1;
// turn ADC ON
while (1)
    {
    DelayNmSec(100); // sample for 100 mS
    ADCON1bits.SAMP = 0; // start Converting
    while (!ADCON1bits.DONE); // conversion done?
    ADCValue = ADCBUFO; // yes then get ADC value
    } // repeat
```


17.12.2 Clocked Conversion Trigger

When $\mathrm{SSRC}<2: 0>=111$, the conversion trigger is under A/D clock control. The SAMC bits (ADCON3<12:8>) select the number of TAD clock cycles between the start of sampling and the start of conversion. This trigger option provides the fastest conversion rates on multiple channels. After the start of sampling, the module will count a number of TAD clocks specified by the SAMC bits.

Equation 17-2: Clocked Conversion Trigger Time
\square

$$
T S M P=S A M C<4: 0>* T A D
$$

When using only $1 \mathrm{~S} / \mathrm{H}$ channel or simultaneous sampling, SAMC must always be programmed for at least one clock cycle. When using multiple S / H channels with sequential sampling, programming SAMC for zero clock cycles will result in the fastest possible conversion rate. See Example 17-3 for code example.

Figure 17-6: Converting 1 Channel, Manual Sample Start, TAD Based Conversion Start

Example 17-3: Converting 1 Channel, Manual Sample Start, Tad Based Conversion Start Code

```
ADPCFG = 0xEFFF; // all PORTB = Digital; RB12 = analog
ADCON1 = 0x00E0; // SSRC bit = 111 implies internal
// counter ends sampling and starts
// converting.
ADCHS = 0x000C; // Connect RB12/AN12 as CH0 input ..
// in this example RB12/AN12 is the input
ADCSSL = 0;
ADCON3 = 0x1F02; // Sample time = 31Tad, Tad = internal 2 Tcy
ADCON2 = 0;
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
    {
    ADCON1bits.SAMP = 1; // start sampling then ...
// after 31Tad go to conversion
    while (!ADCON1bits.DONE); // conversion done?
    ADCValue = ADCBUFO; // yes then get ADC value
    } // repeat // repeat
```


17.12.2.1 Free Running Sample Conversion Sequence

As shown in Figure 17-7, using the Auto-Convert Conversion Trigger mode (SSRC = 111) in combination with the Auto-Sample Start mode (ASAM = 1), allows the A/D module to schedule sample/conversion sequences with no intervention by the user or other device resources. This "Clocked" mode allows continuous data collection after module initialization. See Example 17-4 for code example.

Note: This A/D configuration must be enabled for the conversion rate of 750 ksps (see Section 17.22 "A/D Conversion Speeds" for details)

Figure 17-7: Converting 1 Channel, Auto-Sample Start, TAD Based Conversion Start

Example 17-4: Converting 1 Channel, Auto-Sample Start, Tad Based Conversion Start Code

```
ADPCFG = 0xFFFB; // all PORTB = Digital; RB2 = analog
ADCON1 = 0xOOEO; // SSRC bit = 111 implies internal
    // counter ends sampling and starts
    // converting.
ADCHS = 0x0002; // Connect RB2/AN2 as CH0 input ..
    // in this example RB2/AN2 is the input
ADCSSL = 0;
ADCON3 = 0x0F00; // Sample time = 15Tad, Tad = internal Tcy/2
ADCON2 = 0x0004; // Interrupt after every 2 samples
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
    {
    ADCValue = 0; // clear value
    ADC16Ptr = &ADCBUF0; // initialize ADCBUF pointer
    IFSObits.ADIF = 0; // clear ADC interrupt flag
    ADCON1bits.ASAM = 1; // auto start sampling
    // for 31Tad then go to conversion
    while (!IFSObits.ADIF); // conversion done?
    ADCON1bits.ASAM = 0; // yes then stop sample/convert
    for (count = 0; count < 2; count++) // average the 2 ADC value
        ADCValue = ADCValue + *ADC16Ptr++;
    ADCValue = ADCValue >> 1;
    } // repeat
```


17.12.2.2 Multiple Channels with Simultaneous Sampling

As shown in Figure 17-8 when using simultaneous sampling, the SAMC value specifies the sampling time. In the example, SAMC specifies a sample time of 3 TAD. Because automatic sample start is active, sampling will start on all channels after the last conversion ends and will continue for 3 A/D clocks. See Example 17-5 for code example.

Figure 17-8: Converting 4 Channels, Auto-Sample Start, Tad Conversion Start, Simultaneous Sampling

Example 17-5: Converting 4 Channels, Auto-Sample Start, Tad Conversion Start, Simultaneous Sampling Code

```
ADPCFG = 0xFF78;
// RB0,RB1,RB2 & RB7 = analog
ADCON1 = 0x00EC;
// SIMSAM bit = 1 implies ...
// simultaneous sampling
// ASAM = 1 for auto sample after convert
// SSRC = 111 for 3Tad sample time
ADCHS = 0x0007; // Connect AN7 as CHO input
ADCSSL = 0;
ADCON3 = 0x0302; // Auto Sampling 3 Tad, Tad = internal 2 TCy
ADCON2 = 0x030C; // CHPS = 1x implies simultaneous ...
// sample CHO to CH3
// SMPI = 0011 for interrupt after 4 converts
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
    {
    ADC16Ptr = &ADCBUF0; // initialize ADCBUF pointer
    OutDataPtr = &OutData[0]; // point to first TXbuffer value
    IFSObits.ADIF = 0; // clear interrupt
    while (IFSObits.ADIF); // conversion done?
    for (count = 0; count < 4; count++) // save the ADC values
            {
            ADCValue = *ADC16Ptr++;
            LoadADC (ADCValue);
            }
    } // repeat
```


17.12.2.3 Multiple Channels with Sequential Sampling

As shown in Figure 17-9 when using sequential sampling, the sample time precedes each conversion time. In the example, 3 TAD clocks are added for sample time for each channel.

Note: \quad This A/D configuration must be enabled for the configuration rates of 1 Msps and 600 ksps (see Section 17.22 "A/D Conversion Speeds" for further details).

Figure 17-9: Converting 4 Channels, Auto-Sample Start, TAD Conversion Start, Sequential Sampling

17.12.2.4 Sample Time Considerations Using Clocked Conversion Trigger and Automatic Sampling

Different sample/conversion sequences provide different available sampling times for the S/H channel to acquire the analog signal. The user must ensure the sampling time exceeds the sampling requirements, as outlined in Section 17.16 "A/D Sampling Requirements".
Assuming that the module is set for automatic sampling and using a clocked conversion trigger, the sampling interval is determined by the sample interval specified by the SAMC bits.

If the SIMSAM bit specifies simultaneous sampling or only one channel is active, the sampling time is the period specified by the SAMC bit.
Equation 17-3: Available Sampling Time, Simultaneous Sampling

$$
T S M P=S A M C<4: 0>* T A D
$$

If the SIMSAM bit specifies sequential sampling, the total interval used to convert all channels is the number of channels times the sampling time and conversion time. The sampling time for an individual channel is the total interval minus the conversion time for that channel.

Equation 17-4: Available Sampling Time, Simultaneous Sampling

```
TSEQ = Channels per Sample (CH/S) *
    ((SAMC<4:0> * TAD) + Conversion Time (TCONV))
TSMP = (TSEQ - TconV)
```

Note 1: CH / S specified by $\mathrm{CHPS}<1: 0>$ bits.
2: TSEQ is the total time for the sample/convert sequence.

17.12.3 Event Trigger Conversion Start

It is often desirable to synchronize the end of sampling and the start of conversion with some other time event. The A/D module may use one of three sources as a conversion trigger.

17.12.3.1 External INT Pin Trigger

When SSRC<2:0> = 001, the A/D conversion is triggered by an active transition on the INT0 pin. The INTO pin may be programmed for either a rising edge input or a falling edge input.

17.12.3.2 GP Timer Compare Trigger

The A / D is configured in this Trigger mode by setting $S S R C<2: 0>=010$. When a match occurs between the 32-bit timer TMR3/TMR2 and the 32-bit Combined Period register PR3/PR2, a special ADC trigger event signal is generated by Timer3. This feature does not exist for the TMR5/TMR4 timer pair. Refer to Section 12. "Timers" for more details.

17.12.3.3 Motor Control PWM Trigger

The PWM module has an event trigger that allows A / D conversions to be synchronized to the PWM time base. When $\mathrm{SSRC}<2: 0>=011$, the A/D sampling and conversion times occur at any user programmable point within the PWM period. The special event trigger allows the user to minimize the delay between the time when A/D conversion results are acquired and the time when the duty cycle value is updated. Refer to Section 15. "Motor Control PWM" for more details.

17.12.3.4 Synchronizing A/D Operations to Internal or External Events

Using the modes where an external event trigger pulse ends sampling and starts conversion ($\mathrm{SSRC}=001,10,011$) may be used in combination with auto-sampling (ASAM = 1) to cause the A / D to synchronize the sample conversion events to the trigger pulse source. For example, in Figure 17-11 where SSRC $=010$ and $\operatorname{ASAM}=1$, the A/D will always end sampling and start conversions synchronously with the timer compare trigger event. The A/D will have a sample conversion rate that corresponds to the timer comparison event rate. See Example 17-6 for code example.

Figure 17-10: Converting 1 Channel, Manual Sample Start, Conversion Trigger Based Conversion Start

Figure 17-11: Converting 1 Channel, Auto-Sample Start, Conversion Trigger Based Conversion Start

Example 17-6: Converting 1 Channel, Auto-Sample Start, Conversion Trigger Based Conversion Start Code

```
ADPCFG = 0xFFFB;
ADCON1 = 0x0040; // SSRC bit = 010 implies GP TMR3
    // all PORTB = Digital; RB2 analog
    // compare ends sampling and starts
    // converting.
ADCHS = 0x0002; }\quad\mathrm{ // Connect RB2/AN2 as CHO input .. 
ADCSSL = 0;
ADCON3 = 0x0000; // Sample time is TMR3, Tad = internal TCy/2
ADCON2 = 0x0004; // Interrupt after 2 conversions
// set TMR3 to time out every 125 mSecs
TMR3 = 0x0000;
PR3 = 0x3FFF;
T3CON = 0x8010;
ADCON1bits.ADON = 1; // turn ADC ON
ADCON1bits.ASAM = 1; // start auto sampling every 125 mSecs
while (1) // repeat continuously
    {
    while (!IFSObits.ADIF); // conversion done?
    ADCValue = ADCBUFO; // yes then get first ADC value
    IFSObits.ADIF = 0; // clear ADIF
} // repeat
```


17.12.3.5 Multiple Channels with Simultaneous Sampling

As shown in Figure 17-12 when using simultaneous sampling, the sampling will start on all channels after setting the ASAM bit or when the last conversion ends. Sampling will stop and conversions will start when the conversion trigger occurs.

Figure 17-12: Converting 4 Channels, Auto-Sample Start, Trigger Conversion Start, Simultaneous Sampling

Section 17. 10-bit A/D Converter

17.12.3.6 Multiple Channels with Sequential Sampling

As shown in Figure 17-13 when using sequential sampling, sampling for a particular channel will stop just prior to converting that channel and will resume after the conversion has stopped.

Figure 17-13: Converting 4 Channels, Auto-Sample Start, Trigger Conversion Start, Sequential Sampling

17.12.3.7 Sample Time Considerations for Automatic Sampling/Conversion Sequences

Different sample/conversion sequences provide different available sampling times for the S/H channel to acquire the analog signal. The user must ensure the sampling time exceeds the sampling requirements, as outlined in Section 17.16 "A/D Sampling Requirements".

Assuming that the module is set for automatic sampling and an external trigger pulse is used as the conversion trigger, the sampling interval is a portion of the trigger pulse interval.

If the SIMSAM bit specifies simultaneous sampling, the sampling time is the trigger pulse period less the time required to complete the specified conversions.

Equation 17-5: Available Sampling Time, Simultaneous Sampling

```
TSMP = Trigger Pulse Interval (TSEQ) -
    Channels per Sample (CH/S) * Conversion Time (TcONV)
TsmP = TSEQ - (CH/S * TcONV)
```

Note 1: CH / S specified by $\mathrm{CHPS}<1: 0>$ bits.
2: TSEQ is the trigger pulse interval time.
If the SIMSAM bit specifies sequential sampling, the sampling time is the trigger pulse period less the time required to complete only one conversion.

Equation 17-6: Available Sampling Time, Sequential Sampling

```
TSMP = Trigger Pulse Interval (TSEQ) -
    Conversion Time (TCONv)
TSMP = TSEQ - TCONV
```

Note: TSEQ is the trigger pulse interval time.

17.13 Controlling Sample/Conversion Operation

The application software may poll the SAMP and DONE bits to keep track of the A/D operations or the module can interrupt the CPU when conversions are complete. The application software may also abort A/D operations if necessary.

17.13.1 Monitoring Sample/Conversion Status

The SAMP (ADCON1<1>) and DONE (ADCON1<0>) bits indicate the sampling state and the conversion state of the A/D, respectively. Generally, when the SAMP bit clears, indicating end of sampling, the DONE bit is automatically set, indicating end of conversion. If both SAMP and DONE are ' 0 ', the A/D is in an inactive state. In some Operational modes, the SAMP bit may also invoke and terminate sampling.

17.13.2 Generating an A/D Interrupt

The $\mathrm{SMPI}<3: 0>$ bits control the generation of interrupts. The interrupt will occur some number of sample/conversion sequences after starting sampling and re-occur on each equivalent number of samples. Note that the interrupts are specified in terms of samples and not in terms of conversions or data samples in the buffer memory.
When the SIMSAM bit specifies sequential sampling, regardless of the number of channels specified by the CHPS bits, the module samples once for each conversion and data sample in the buffer. Therefore, the value specified by the SMPI bits will correspond to the number of data samples in the buffer, up to the maximum of 16.
When the SIMSAM bit specifies simultaneous sampling, the number of data samples in the buffer is related to the CHPS bits. Algorithmically, the channels/sample times the number of samples will result in the number of data sample entries in the buffer. To avoid loss of data in the buffer due to overruns, the SMPI bits must be set to the desired buffer size divided by the channels per sample.
Disabling the A/D interrupt is not done with the SMPI bits. To disable the interrupt, clear the ADIE analog module interrupt enable bit.

17.13.3 Aborting Sampling

Clearing the SAMP bit while in Manual Sampling mode will terminate sampling, but may also start a conversion if SSRC $=000$.
Clearing the ASAM bit while in Automatic Sampling mode will not terminate an on going sample/convert sequence, however, sampling will not automatically resume after subsequent conversions.

17.13.4 Aborting a Conversion

Clearing the ADON bit during a conversion will abort the current conversion. The A/D Result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the corresponding ADCBUF buffer location will continue to contain the value of the last completed conversion (or the last value written to the buffer).

17.14 Specifying How Conversion Results are Written Into the Buffer

As conversions are completed, the module writes the results of the conversions into the A/D result buffer. This buffer is a RAM array of sixteen 10-bit words. The buffer is accessed through 16 address locations within the SFR space named ADCBUFO...ADCBUFF.
User software may attempt to read each A/D conversion result as it is generated, however, this would consume too much CPU time. Generally, to simplify the code, the module will fill the buffer with results and then generate an interrupt when the buffer is filled.

17.14.1 Number of Conversions per Interrupt

The $\mathrm{SMPI}<3: 0>$ bits ($\mathrm{ADCON} 2<5: 2>$) will select how many A/D conversions will take place before the CPU is interrupted. This can vary from 1 sample per interrupt to 16 samples per interrupt. The A/D converter module always starts writing its conversion results at the beginning of the buffer, after each interrupt. For example, if $\mathrm{SMP} \mid<3: 0>=0000$, the conversion results will always be written to ADCBUFO. In this example, no other buffer locations would be used.

17.14.2 Restrictions Due to Buffer Size

The user cannot program a combination of CHPS and SMPI bits that specifies more than 16 conversions per interrupt when the BUFM bit (ADCON2<1>) is ' 0 ', or 8 conversions per interrupt when the BUFM bit (ADCON2<1>) is ' 0 '. The BUFM bit function is described below.

17.14.3 Buffer Fill Mode

When the BUFM bit (ADCON2<1>) is ' 1 ', the 16-word results buffer (ADRES) will be split into two 8 -word groups. The 8 -word buffers will alternately receive the conversion results after each interrupt event. The initial 8 -word buffer used after BUFM is set will be located at the lower addresses of ADCBUF. When BUFM is ' 0 ', the complete 16 -word buffer is used for all conversion sequences.
The decision to use the BUFM feature will depend upon how much time is available to move the buffer contents after the interrupt, as determined by the application. If the processor can quickly unload a full buffer within the time it takes to sample and convert one channel, the BUFM bit can be ' 0 ' and up to 16 conversions may be done per interrupt. The processor will have one sample and conversion time before the first buffer location is overwritten.
If the processor cannot unload the buffer within the sample and conversion time, the BUFM bit should be ' 1 '. For example, if $\mathrm{SMPI}<3: 0>=0111$, then eight conversions will be loaded into $1 / 2$ of the buffer, following which an interrupt will occur. The next eight conversions will be loaded into the other $1 / 2$ of the buffer. The processor will therefore have the entire time between interrupts to move the eight conversions out of the buffer.

17.14.4 Buffer Fill Status

When the conversion result buffer is split using the BUFM control bit, the BUFS status bit ($\mathrm{ADCON} 2<7>$) indicates the half of the buffer that the A/D converter is currently filling. If BUFS $=0$, then the A/D converter is filling ADCBUF0-ADCBUF7 and the user software should read conversion values from ADCBUF8-ADCBUFF. If BUFS $=1$, the situation is reversed and the user software should read conversion values from ADCBUF0-ADCBUF7.

17．15 Conversion Sequence Examples

The following configuration examples show the A／D operation in different sampling and buffering configurations．In each example，setting the ASAM bit starts automatic sampling．A conversion trigger ends sampling and starts conversion．

17．15．1 Example：Sampling and Converting a Single Channel Multiple Times

Figure 17－11 and Table 17－2 illustrate a basic configuration of the A／D．In this case，one A／D input，ANO，will be sampled by one sample and hold channel， CHO ，and converted．The results are stored in the ADCBUF buffer．This process repeats 16 times until the buffer is full and then the module generates an interrupt．The entire process will then repeat．
The CHPS bits specify that only sample／hold CH0 is active．With ALTS clear，only the MUX A inputs are active．The CHOSA bits and CHONA bit are specified（ANO－VrEF－）as the input to the sample／hold channel．All other input selection bits are not used．

Figure 17－14：Converting One Channel 16 Times／Interrupt

Table 17-2: Converting One Channel 16 Times/Interrupt

CONTROL BITS Sequence Select	
SMPI<2:0> = 1111	
	Interrupt on 16th sample
CHPS<1:0> $=00$	
	Sample Channel CH0
SIMSAM = n/a Not applicable for single channel sample	
BUFM = 0	
Single 16-word result buffer	
ALTS $=0$	
Always use MUX A input select	
MUX A Input Select	
CH0SA<3:0> $=0000$	
Select ANO for $\mathrm{CHO}+$ input	
CHONA $=0$	
Select Vref- for CH0-input	
$\text { CSCNA = } 0$ No input scan	
CSSL<15:0> = n/a Scan input select unused	
CH123SA = n/a Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3+$ input unused	
CH123NA<1:0> = n/a Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ - input unused	
MUX B Input Select	
CH0SB<3:0> = n/a	
Channel $\mathrm{CH} 0+$ input unused	
$\begin{array}{ll} \hline \mathrm{CHONB}=\mathrm{n} / \mathrm{a} & \\ & \text { Channel CHO- input unused } \\ \hline \end{array}$	
$\begin{aligned} & \hline \mathrm{CH} 123 \mathrm{SB}=\mathrm{n} / \mathrm{a} \\ & \text { Channel } \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3+\text { input unused } \end{aligned}$	
CH123NB<1:0> = n/a Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ - input unused	

OPERATION SEQUENCE

Buffer
ADCBUFO
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @ 1st Interrupt

ANO sample 1
ANO sample 2
ANO sample 3
ANO sample 4
ANO sample 5
ANO sample 6
ANO sample 7
ANO sample 8
AN0 sample 9
AN0 sample 10
ANO sample 11
ANO sample 12
ANO sample 13
AN0 sample 14
AN0 sample 15
ANO sample 16

Buffer @ 2nd Interrupt

ANO sample 17
ANO sample 18
ANO sample 19
ANO sample 20
ANO sample 21
ANO sample 22
ANO sample 23
ANO sample 24
AN0 sample 25
AN0 sample 26
AN0 sample 27
ANO sample 28
ANO sample 29
ANO sample 30
AN0 sample 31
ANO sample 32

17.15.2 Example: A/D Conversions While Scanning Through All Analog Inputs

Figure 17-15 and Table 17-3 illustrate a very typical setup where all available analog input channels are sampled by one sample and hold channel, CH 0 , and converted. The set CSCNA bit specifies scanning of the A / D inputs to the CH 0 positive input. Other conditions are similar to Subsection 17.15.1.
Initially, the ANO input is sampled by CHO and converted. The result is stored in the ADCBUF buffer. Then the AN1 input is sampled and converted. This process of scanning the inputs repeats 16 times until the buffer is full and then the module generates an interrupt. The entire process will then repeat.

Figure 17-15: Scanning Through 16 Inputs/Interrupt

Table 17-3: Scanning Through 16 Inputs/Interrupt

CONTROL BITS
Sequence Select

SMPI<2:0> = 1111	
	Interrupt on 16th sample
CHPS<1:0> = 00	
	Sample Channel CH0
SIMSAM = n/a	
Not applicable for single channel sample	
BUFM = 0	
	ngle 16-word result buffer
ALTS $=0$	
	s use MUX A input select
MUX	nput Select

CHOSA<3:0> = n/a

	Override by CSCNA
CHONA $=0$	
	S
CSCNA = 1	
	Scan $\mathrm{CHO}+$ Inputs
$\begin{array}{ll}\text { CSSL<15:0> = } 1111 & 1111 \text { 1111 } 1111 \\ & \text { Scan input select unused }\end{array}$	
$\begin{aligned} & \mathrm{CH} 123 \mathrm{SA}=\mathrm{n} / \mathrm{a} \\ & \text { Channel } \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3+\text { input unused } \end{aligned}$	
CH123NA<1:0> = n/a Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$ - input unused	

MUX B Input Select

CH0SB<3:0>	
	Channel $\mathrm{CH} 0+$ input unused
CHONB = n/a	
	Channel CH0- input unused
CH123SB = n/a	
Channel $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3+$ input unused	
CH123NB<1:0> = n/a	
Chan	, $\mathrm{CH} 2, \mathrm{CH} 3$ - input unused

OPERATION SEQUENCE

Sample MUX A Inputs: AN0 -> CH0	
Convert CH0, Write Buffer 0x0	
Sample MUX A Inputs: AN1 -> CH0	
Convert CH0, Write Buffer 0x1	
Sample MUX A Inputs: AN2 -> CH0	
Convert CH0, Write Buffer 0x2	
Sample MUX A Inputs: AN3 -> CH0	
Convert CH0, Write Buffer 0x3	
Sample MUX A Inputs: AN4 -> CH0	
Convert CH0, Write Buffer 0x4	
Sample MUX A Inputs: AN5 -> CH0	
Convert CH0, Write Buffer 0x5	
Sample MUX A Inputs: AN6 -> CH0	
Convert CH0, Write Buffer 0x6	
Sample MUX A Inputs: AN7 -> CH0	
Convert CH0, Write Buffer 0x7	
Sample MUX A Inputs: AN8 -> CH0	
Convert CH0, Write Buffer 0x8	
Sample MUX A Inputs: AN9 $->\mathrm{CH0}$	
Convert CH0, Write Buffer 0x9	
Sample MUX A Inputs: AN10 -> CH0	
Convert CH0, Write Buffer 0xA	
Sample MUX A Inputs: AN11 -> CH0	
Convert CH0, Write Buffer 0xB	
Sample MUX A Inputs: AN12 -> CH0	
Convert CH0, Write Buffer 0xC	
Sample MUX A Inputs: AN13 -> CH0	
Convert CH0, Write Buffer 0xD	
Sample MUX A Inputs: AN14 -> CH0	
Convert CH0, Write Buffer 0xE	
Sample MUX A Inputs: AN15 -> CH0	
Convert CH0, Write Buffer 0xF	
Interrupt	
Repeat	

Buffer
Address
ADCBUFO
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @ 1st Interrupt
AN0 sample 1
AN1 sample 2
AN2 sample 3
AN3 sample 4
AN4 sample 5
AN5 sample 6
AN6 sample 7
AN7 sample 8
AN8 sample 9
AN9 sample 10
AN10 sample 11
AN11 sample 12
AN12 sample 13
AN13 sample 14
AN14 sample 15
AN15 sample 16

Buffer @ 2nd Interrupt
AN0 sample 17
AN1 sample 18
AN2 sample 19
AN3 sample 20
AN4 sample 21
AN5 sample 22
AN6 sample 23
AN7 sample 24
AN8 sample 25
AN9 sample 26
AN10 sample 27
AN11 sample 28
AN12 sample 29
AN13 sample 30
AN14 sample 31
AN15 sample 32

17.15.3 Example: Sampling Three Inputs Frequently While Scanning Four Other Inputs

Figure 17-16 and Table 17-4 shows how the A/D converter could be configured to sample three inputs frequently using sample/hold channels $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 ; while four other inputs are sampled less frequently by scanning them using sample/hold channel CHO . In this case, only MUX A inputs are used, and all 4 channels are sampled simultaneously. Four different inputs (AN4, AN5, AN6, AN7) are scanned in CH0, whereas AN0, AN1 and AN2 are the fixed inputs for $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 , respectively. Thus, in every set of 16 samples, AN0, AN1 and AN2 would be sampled 4 times, while AN4, AN5, AN6 and AN7 would be sampled only once each.

Figure 17-16: Converting Three Inputs, Four Times and Four Inputs, One Time/Interrupt

Table 17-4: Converting Three Inputs, Four Times and Four Inputs, One Time/Interrupt

OPERATION SEQUENCE

Buffer

Address
ADCBUF0
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @ 1st Interrupt
AN4 sample 1
AN0 sample 1
AN1 sample 1
AN2 sample 1
AN5 sample 2
AN0 sample 2
AN1 sample 2
AN2 sample 2
AN6 sample 3
AN0 sample 3
AN1 sample 3
AN2 sample 3
AN7 sample 4
AN0 sample 4
AN1 sample 4
AN2 sample 4

Buffer @ 2nd Interrupt
AN4 sample 5
AN0 sample 5
AN1 sample 5
AN2 sample 5
AN5 sample 6
AN0 sample 6
AN1 sample 6
AN2 sample 6
AN6 sample 7
AN0 sample 7
AN1 sample 7
AN2 sample 7
AN7 sample 8
AN0 sample 8
AN1 sample 8
AN2 sample 8

Section 17. 10-bit A/D Converter

17.15.4 Example: Using Dual 8-Word Buffers

Figure 17-17 and Table 17-5 demonstrate using dual 8-word buffers and alternating the buffer fill. Setting the BUFM bit enables dual 8 -word buffers. The BUFM setting does not affect other operational parameters. First, the conversion sequence starts filling the buffer at ADCBUFO (buffer location 0×0). After the first interrupt occurs, the buffer begins to fill at ADCBUF8 (buffer location 0×8). The BUFS status bit is set and cleared alternately after each interrupt. In this example, all four channels are sampled simultaneously, and an interrupt occurs after every sample.

Figure 17-17: Converting Four Inputs, One Time/Interrupt Using Dual 8-Word Buffers

Table 17-5: Converting Four Inputs, One Time/Interrupt Using Dual 8-Word Buffers

CONTROL BITS
Sequence Select

SMPI<2:0> = 0000	
	Interrupt on each sample
CHPS<1:0> = 1x	
Sample Channels $\mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3, \mathrm{CH} 0$	
SIMSAM = 1	
Sample all channels simultaneously	
BUFM = 1	
	Dual 8-word result buffers
ALTS $=0$	
	ays use MUX A input select
MUX	nput Select

CH0SA<3:0> $=0011$	
	Select AN3 for $\mathrm{CH} 0+$ input
CHONA $=0$	
	Select Vref- for CH0- input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
$\mathrm{CH} 123 \mathrm{SA}=0$	
$\mathrm{CH} 1+=$ ANO	, $\mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=$ AN2
CH123NA<1:0> = 0x	
	CH1-, CH2-, CH3- = Vref-

MUX B Input Select

OPERATION SEQUENCE

Sample MUX A Inputs:$\text { AN3 }->\mathrm{CHO}, \mathrm{ANO}-\mathrm{CH} 1, \mathrm{AN} 1->\mathrm{CH} 2, \mathrm{AN} 2->\mathrm{CH} 3$	
	Convert CH0, Write Buffer 0x0
	Convert CH1, Write Buffer 0x1
	Convert CH2, Write Buffer 0x2
	Convert CH3, Write Buffer 0x3
Interrupt; Change Buffer	
Sample MUX A Inputs:$\text { AN3 }->\mathrm{CH} 0, \mathrm{ANO}->\mathrm{CH} 1, \text { AN1 }->\mathrm{CH} 2, \mathrm{AN} 2->\mathrm{CH} 3$	
	Convert CH0, Write Buffer 0x8
	Convert CH1, Write Buffer 0x9
	Convert CH2, Write Buffer 0xA
	Convert CH3, Write Buffer 0xB
Interrupt; Change Buffer	
Repeat	

Buffer
Address
ADCBUF0
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @
1st Interrupt

Buffer @ 2nd Interrupt

AN3 sample 2
AN0 sample 2
AN1 sample 2
AN2 sample 2

17.15.5 Example: Using Alternating MUX A, MUX B Input Selections

Figure 17-18 and Table 17-6 demonstrate alternate sampling of the inputs assigned to MUX A and MUX B. In this example, 2 channels are enabled to sample simultaneously. Setting the ALTS bit enables alternating input selections. The first sample uses the MUX A inputs specified by the CHOSA, CHONA, CHXSA and CHXNA bits. The next sample uses the MUX B inputs specified by the CHOSB, CHONB, CHXSB and CHXNB bits. In this example, one of the MUX B input specifications uses 2 analog inputs as a differential source to the sample/hold, sampling (AN3-AN9).
This example also demonstrates use of the dual 8-word buffers. An interrupt occurs after every 4th sample, resulting in filling 8 -words into the buffer on each interrupt.
Note that using 4 sample/hold channels without alternating input selections results in the same number of conversions as this example, using 2 channels with alternating input selections. However, because the $\mathrm{CH} 1, \mathrm{CH} 2$ and CH 3 channels are more limited in the selectivity of the analog inputs, this example method provides more flexibility of input selection than using 4 channels.

Figure 17-18: Converting Two Sets of Two Inputs Using Alternating Input Selections

Table 17-6: Converting Two Sets of Two Inputs Using Alternating Input Selections

CONTROL BITS Sequence Select	
SMPI<2:0> = 0011	
	Interrupt on 4th sample
CHPS<1:0> = 01	
Sample Channels CH0, CH1	
$\text { SIMSAM = } 1$ Sample all channels simultaneously	
BUFM = 1	
Dual 8-word result buffers	
ALTS $=1$	
Alternate MUX A/B input select	
MUX A Input Select	
CH0SA<3:0> $=0001$	
Select AN1 for $\mathrm{CH} 0+$ input	
CHONA $=0$	
Select VreF- for CHO 0 -input	
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
Scan input select unused	
$\begin{aligned} & \mathrm{CH} 123 \mathrm{SA}=0 \\ & \mathrm{CH} 1+=\mathrm{AN} 0, \mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=\mathrm{AN} 2 \end{aligned}$	
$\mathrm{CH} 123 \mathrm{NA}<1: 0>=0 \times \mathrm{CH} 1-, \mathrm{CH} 2-, \mathrm{CH} 3-=\text { VREF- }$	
MUX B Input Select	
CH0SB<3:0> = 1111	
Select AN15 for $\mathrm{CH} 0+$ input	
$\begin{array}{ll} \hline \text { CHONB }=0 & \text { Select VREF- for } \mathrm{CHO} \text { - input } \\ \hline \end{array}$	
$\begin{aligned} & \mathrm{CH} 123 \mathrm{SB}=1 \\ & \mathrm{CH} 1+=\mathrm{AN} 3, \mathrm{CH} 2+=\mathrm{AN} 4, \mathrm{CH} 3+=\mathrm{AN} 5 \end{aligned}$	
$\begin{aligned} & \text { CH123NB<1:0> = } 11 \\ & \text { CH1- = AN9, CH2- = AN10, CH3- = AN11 } \end{aligned}$	

OPERATION SEQUENCE

Sample MUX A Inputs: AN1 -> CH0, AN0 -> CH1
Convert CH0, Write Buffer 0x0
Convert CH1, Write Buffer 0x1
Sample MUX B Inputs: AN15 -> CH0, (AN3-AN9) -> CH1
Convert CH0, Write Buffer 0x2
Convert CH1, Write Buffer 0x3
Sample MUX A Inputs: AN1 -> CH0, AN0 -> CH1
Convert CH0, Write Buffer 0x4
Convert CH1, Write Buffer 0x5
Sample MUX B Inputs: AN15 -> CH0, (AN3-AN9) -> CH1
Convert CH0, Write Buffer 0x6
Convert CH1, Write Buffer 0x7
Interrupt; Change Buffer
Sample MUX A Inputs: AN1 -> CH0, AN0 -> CH1
Convert CH0, Write Buffer 0x8 Convert CH1, Write Buffer 0x9
Convert CHO, Write Buffer 0xA
Convert CH1, Write Buffer 0xB
Sample MUX A Inputs: AN1 -> CH0, AN0 -> CH1
Convert CHO, Write Buffer 0xC
Convert CH0, Write Buffer 0xE
Convert CH1, Write Buffer 0xF
Interrupt; Change Buffer
Repeat

Buffer

Address
ADCBUFO
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @ 1st Interrupt
AN1 sample 1
AN0 sample 1
AN15 sample 2
(AN3-AN9) sample 2
AN1 sample 3
AN0 sample 3
AN15 sample 4
(AN3-AN9) sample 4

Buffer @ 2nd Interrupt
AN1 sample 5
AN0 sample 5
AN15 sample 6
(AN3-AN9) sample 6
AN1 sample 7
AN0 sample 7
AN15 sample 8
(AN3-AN9) sample 8

Section 17. 10-bit A/D Converter

17.15.6 Example: Sampling Eight Inputs Using Simultaneous Sampling

Subsection 17.15.6 and Subsection 17.15.7 demonstrate identical setups with the exception that Subsection 17.15.6 uses simultaneous sampling with SIMSAM = 1 and Subsection 17.15.7 uses sequential sampling with SIMSAM $=0$. Both examples use alternating inputs and specify differential inputs to the sample/hold.
Figure 17-19 and Table 17-7 demonstrate simultaneous sampling. When converting more than one channel and selecting simultaneous sampling, the module will sample all channels, then perform the required conversions in sequence. In this example, with ASAM set, sampling will begin after the conversions complete.

Figure 17-19: Sampling Eight Inputs Using Simultaneous Sampling

Table 17-7: Sampling Eight Inputs Using Simultaneous Sampling

CONTROL BITS

Sequence Select

SMPI<2:0> = 0011	
	Interrupt on 4th sample
CHPS<1:0> = 1x	
Sample Channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$	
SIMSAM = 1	
Sample all channels simultaneously	
BUFM = 0	
	Single 16-word result buffer
ALTS = 1	
Alternat	MUX A/MUX B input select
MUX	A Input Select

$\begin{aligned} & \mathrm{CH} 0 \mathrm{SA}<3: 0>=1101 \\ & \text { Select AN13 for } \mathrm{CH} 0+\text { input }\end{aligned}$

CHONA $=1$	Select AN1 for CH0- input
CSCNA $=0$	No input scan

CSSL<15:0> $=\mathrm{n} / \mathrm{a}$	
	Scan input select unused
CH123SA	

CH123SA $=0$
$\mathrm{CH} 1+=\mathrm{ANO}, \mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=\mathrm{AN} 2$
CH123NA<1:0> $=0 x$
CH1-, CH2-, CH3- = Vref-

MUX B Input Select

CH0SB<3:0> = 1110	
	Select AN14 for $\mathrm{CH} 0+$ input
CHONB $=0$	
	Select VREF- for CHO- input
CH123SB = 1	
$\mathrm{CH} 1+=\mathrm{AN} 3, \mathrm{CH} 2+=$ AN4, CH3+ = AN5	
CH123NB<1:0> = 10	
	6, CH2- = AN7, CH3- = AN8

OPERATION SEQUENCE

Sample MUX A Inputs:$\text { (AN13-AN1) -> CH0, ANO }-\mathrm{CH} 1, \text { AN1 }-\mathrm{CH} 2, \text { AN2 }->\mathrm{CH} 3$	
Convert CHO, Write Buffer 0x0	
Convert CH1, Write Buffer 0x1	
Convert CH2, Write Buffer 0x2	
Convert CH3, Write Buffer 0x3	
Sample MUX B Inputs: AN14 -> CHO , (AN3-AN6) -> CH1, (AN4-AN7) -> CH2, (AN5-AN8) -> CH3	
Convert CH0, Write Buffer 0x4	
Convert CH1, Write Buffer 0x5	
Convert CH2, Write Buffer 0x6	
Convert CH3, Write Buffer 0x7	
Sample MUX A Inputs:(AN13-AN1) -> CH0, ANO -> CH1, AN1 -> CH2, AN2 -> CH3	
Convert CH0, Write Buffer 0x8	
Convert CH1, Write Buffer 0x9	
Convert CH2, Write Buffer 0xA	
Convert CH3, Write Buffer 0xB	
Sample MUX B Inputs: AN14 -> CHO,	
(AN3-AN6) -> CH1, (AN4-AN7) -> CH2, (AN5-AN8) -> CH3	
Convert CH0, Write Buffer 0xC	
Convert CH1, Write Buffer 0xD	
Convert CH2, Write Buffer 0xE	
Convert CH3, Write Buffer 0xF	
Interrupt	
Repeat	

Buffer
Address
ADCBUF0
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA
ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF
Buffer @
1st Interrupt

Buffer @ 2nd Interrupt
(AN13-AN1) sample 5
AN0 sample 5
AN1 sample 5
AN2 sample 5
AN14 sample 6
(AN3-AN6) sample 6
(AN4-AN7) sample 6
(AN5-AN8) sample 6
(AN13-AN1) sample 7
AN0 sample 7
AN1 sample 7
AN2 sample 7
AN14 sample 8
(AN3-AN6) sample 8
(AN4-AN7) sample 8
(AN5-AN8) sample 8

17.15.7 Example: Sampling Eight Inputs Using Sequential Sampling

Figure 17-20 and Table 17-8 demonstrate sequential sampling. When converting more than one channel and selecting sequential sampling, the module will start sampling a channel at the earliest opportunity, then perform the required conversions in sequence. In this example, with ASAM set, sampling of a channel will begin after the conversion of that channel completes.
When ASAM is clear, sampling will not resume after conversion completion but will occur when setting the SAMP bit.
When utilizing more than one channel, sequential sampling provides more sampling time since a channel may be sampled while conversion occurs on another.

Figure 17-20: Sampling Eight Inputs Using Sequential Sampling

Table 17-8: Sampling Eight Inputs Using Sequential Sampling

CONTROL BITS
Sequence Select

SMPI<2:0> = 1111	
	Interrupt on 16th sample
CHPS<1:0> = 1x	
Sample Channels $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2, \mathrm{CH} 3$	
SIMSAM = 0	
	Sample all channels sequentially
BUFM $=0$	
	Single 16-word result buffer
ALTS = 1	
	Alternate MUX A/B input select
	MUX A Input Select

CH0SA<3:0> = 0110	
	Select AN6 for $\mathrm{CH} 0+$ input
CHONA $=0$	
	Select Vref- for CH0-input
CSCNA $=0$	
	No input scan
CSSL<15:0> = n/a	
	Scan input select unused
$\mathrm{CH} 123 \mathrm{SA}=0$	
$\mathrm{CH} 1+=\mathrm{ANO}$, $\mathrm{CH} 2+=\mathrm{AN} 1, \mathrm{CH} 3+=\mathrm{AN} 2$
CH123NA<1:0> = 0x	
	CH1-, CH2-, CH3- = Vref-

MUX B Input Select

CH0SB<3:0> = 0111	
	Select AN7 for $\mathrm{CH} 0+$ input
CHONB $=0$	
	Select Vref- for CH0- input
CH123SB = 1	
$\mathrm{CH} 1+$	$\mathrm{CH} 2+=\mathrm{AN} 4, \mathrm{CH} 3+=$ AN5
CH123NB<1:0> $=0 \mathrm{x}$	
	CH1-, CH2-, CH3- = Vrer

OPERATION SEQUENCE

Sample: (AN13-AN1) -> CH0	
	Convert CH0, Write Buffer 0x0
Sample: AN0 -> CH1	
	Convert CH1, Write Buffer 0x1
Sample: AN1 -> CH2	
	Convert CH2, Write Buffer 0x2
Sample: AN2 -> CH3	
	Convert CH3, Write Buffer 0x3
Sample: AN14 -> CH0	
	Convert CH0, Write Buffer 0x4
Sample: (AN3-AN6) -> CH1	
	Convert CH1, Write Buffer 0x5
Sample: (AN4-AN7) -> CH2	
	Convert CH2, Write Buffer 0x6
Sample: (AN5-AN8) -> CH3	
	Convert CH3, Write Buffer 0x7
Sample: (AN13-AN1) -> CH0	
	Convert CH0, Write Buffer 0x8
Sample: AN0 -> CH1	
	Convert CH1, Write Buffer 0x9
Sample: AN1 -> CH2	
	Convert CH2, Write Buffer 0xA
Sample: AN2 -> CH3	
	Convert CH3, Write Buffer 0xB
Sample: AN14 -> CH0	
	Convert CH0, Write Buffer 0xC
Sample: (AN3-AN6) -> CH1	
	Convert CH1, Write Buffer 0xD
Sample: (AN4-AN7) -> CH2	
	Convert CH2, Write Buffer 0xE
Sample: (AN5-AN8) -> CH3	
	Convert CH3, Write Buffer 0xF
Interrupt	
Repeat	

Buffer

Address
ADCBUFO
ADCBUF1
ADCBUF2
ADCBUF3
ADCBUF4
ADCBUF5
ADCBUF6
ADCBUF7
ADCBUF8
ADCBUF9
ADCBUFA ADCBUFB
ADCBUFC
ADCBUFD
ADCBUFE
ADCBUFF

Buffer @ 1st Interrupt

(AN13-AN1) sample 1
AN0 sample 2
AN1 sample 3
AN2 sample 4
AN14 sample 5
(AN3-AN6) sample 6
(AN4-AN7) sample 7
(AN5-AN8) sample 8
(AN13-AN1) sample 9
AN0 sample 10
AN1 sample 11
AN2 sample 12
AN14 sample 13
(AN3-AN6) sample 14
(AN4-AN7) sample 15
(AN5-AN8) sample 16

Buffer @ 2nd Interrupt

(AN13-AN1) sample 17
AN0 sample 18
AN1 sample 19
AN2 sample 20
AN14 sample 21
(AN3-AN6) sample 22
(AN4-AN7) sample 23
(AN5-AN8) sample 24
(AN13-AN1) sample 25
AN0 sample 26
AN1 sample 27
AN2 sample 28
AN14 sample 29
(AN3-AN6) sample 30
(AN4-AN7) sample 31
(AN5-AN8) sample 32

17.16 A/D Sampling Requirements

The analog input model of the 10-bit A/D converter is shown in Figure 17-21. The total sampling time for the A/D is a function of the internal amplifier settling time and the holding capacitor charge time.
For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The analog output source impedance (Rs), the interconnect impedance (RIc), and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge the capacitor ChoLD. The combined impedance must therefore be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D converter, the maximum recommended source impedance, Rs, is $5 \mathrm{k} \Omega$ for the conversion rates of up to 500 ksps and a maximum of 500Ω for conversion rates of up to 1 Msps . After the analog input channel is selected (changed), this sampling function must be completed prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.
At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see the device electrical specifications.

Figure 17-21: 10-bit A/D Converter Analog Input Model

Note: CPIN value depends on device package and is not tested. Effect of CPIN negligible if $\mathrm{Rs} \leq 5 \mathrm{k} \Omega$.

17.17 Reading the A/D Result Buffer

The RAM is 10-bits wide, but the data is automatically formatted to one of four selectable formats when a read from the buffer is performed. The FORM<1:0> bits (ADCON1<9:8>) select the format. The formatting hardware provides a 16-bit result on the data bus for all of the data formats. Figure 17-22 shows the data output formats that can be selected using the FORM<1:0> control bits.

Figure 17-22: A/D Output Data Formats

RAM Contents: \quad| $d 09$ | $d 08$ | $d 07$ | $d 06$ | $d 05$ | $d 04$ | $d 03$ | $d 02$ | $d 01$ | $d 00$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Read to Bus:

Integer	0	0	0	0	0	0	$d 09$	$d 08$	$d 07$	$d 06$	$d 05$	$d 04$	$d 03$	$d 02$	$d 01$	$d 00$

Signed Integer | $\overline{\mathrm{d} 09}$ | $\overline{\mathrm{~d} 09}$ | d 08 | d 07 | d 06 | d 05 | d 04 | d 03 | d 02 | d 01 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fractional (1.15)

$d 09$	$d 08$	$d 07$	$d 06$	$d 05$	$d 04$	$d 03$	$d 02$	$d 01$	$d 00$	0	0	0	0	0	0

Signed Fractional (1.15)

$\overline{d 09}$	$d 08$	$d 07$	$d 06$	$d 05$	$d 04$	$d 03$	$d 02$	$d 01$	$d 00$	0	0	0	0	0	0

Figure 17-23: Numerical Equivalents of Various Result Codes

Vin/Vref	10-bit Output Code	16-bit Integer Format	16-bit Signed Integer Format	16-bit Fractional Format	16-bit Signed Fractional Format
1023/1024	1111111111	$\begin{gathered} 0000001111111111 \\ =1023 \end{gathered}$	$\begin{gathered} 0000000111111111 \\ =511 \end{gathered}$	$\begin{gathered} 1111 \begin{array}{l} 111111000000 \\ =0.999 \end{array} \end{gathered}$	$\begin{gathered} 0111111111000000 \\ =0.499 \end{gathered}$
1022/1024	1111111110	$\begin{gathered} 0000001111111110 \\ =1022 \end{gathered}$	$\begin{gathered} 0000000111111110 \\ =510 \end{gathered}$	$\begin{gathered} 1111 \begin{array}{ll} 111110000000 \\ & =0.998 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 0111111110000000 \\ =0.498 \end{gathered}$
-••					
513/1024	1000000001	$\begin{gathered} 0000001000000001 \\ =513 \end{gathered}$	$\begin{array}{rl} 00000000 & 00000001 \\ & =1 \end{array}$	$\begin{array}{rl} 1000 & 000001000000 \\ & =0.501 \end{array}$	$\begin{array}{rl} 0000 & 000001000000 \\ & =0.001 \end{array}$
512/1024	1000000000	$\begin{gathered} 0000001000000000 \\ =512 \end{gathered}$	$\begin{array}{rl} 00000000 & 00000000 \\ & =0 \end{array}$	$\begin{gathered} 1000000000000000 \\ =0.500 \end{gathered}$	$\begin{gathered} 0000000000000000 \\ =0.000 \end{gathered}$
511/1024	0111111111	$\begin{gathered} 0000000111111111 \\ =511 \end{gathered}$	$\begin{gathered} 1111111111111111 \\ =-1 \end{gathered}$	$\begin{gathered} 0111 \begin{array}{c} 111111000000 \\ \\ = \end{array} .499 \end{gathered}$	$\begin{array}{rl} 1111 & 111111000000 \\ & =-0.001 \end{array}$
-••					
1/1024	0000000001	$\begin{array}{rl} 00000000 & 00000001 \\ = & 1 \end{array}$	$\begin{gathered} 1111 \begin{array}{l} 111000000001 \\ \\ =-511 \end{array} \end{gathered}$	$\begin{aligned} & 0000000001000000 \\ &=0.001 \end{aligned}$	$\begin{array}{rl} 1000 & 000001000000 \\ & =-0.499 \end{array}$
0/1024	0000000000	$\begin{array}{rl} 00000000 & 00000000 \\ & =0 \end{array}$	$\begin{gathered} \left.1111 \begin{array}{l} 111000000000 \\ \\ = \end{array}\right)-512 \end{gathered}$	$\begin{aligned} & 0000000000000000 \\ &=0.000 \end{aligned}$	$\begin{array}{rl} 1000 & 000000000000 \\ & =-0.500 \end{array}$

17.18 Transfer Function

The ideal transfer function of the A / D converter is shown in Figure 17-24. The difference of the input voltages, (VINH - VINL), is compared to the reference, (Vreff - Vrefl).

- The first code transition occurs when the input voltage is (VREFH - VREFL/2048) or 0.5 LSb.
- The 0000000001 code is centered at (VREFH - VREFL/1024) or 1.0 LSb.
- The 1000000000 code is centered at (512*(VREFH - VREFL)/1024).
- An input voltage less than (1*(VREFH - VREFL)/2048) converts as 0000000000.
- An input greater than (2045*(Vrefh - Vrefl)/2048) converts as 1111111111.

Figure 17-24: A/D Transfer Function

17.19 A/D Accuracy/Error

Refer to Section 17.27 "Related Application Notes"for a list of documents that discuss A/D accuracy.

17.20 Connection Considerations

Since the analog inputs employ ESD protection, they have diodes to VDD and VSs. This requires that the analog input must be between VDD and Vss. If the input voltage exceeds this range by greater than 0.3 V (either direction), one of the diodes becomes forward biased and it may damage the device if the input current specification is exceeded.
An external RC filter is sometimes added for anti-aliasing of the input signal. The R component should be selected to ensure that the sampling time requirements are satisfied. Any external components connected (via high-impedance) to an analog input pin (capacitor, zener diode, etc.) should have very little leakage current at the pin.

17.21

Initialization
Example 17-7 shows a simple initialization code example for the A/D module.
In this particular configuration, all 16 analog input pins, ANO-AN15, are set up as analog inputs. Operation in Idle mode is disabled output data is in unsigned fractional format, and AVDD and AVss are used for Vrefh and Vrefl. The start of sampling, as well as start of conversion (conversion trigger), are performed manually in software. The $\mathrm{CHO} \mathrm{S} / \mathrm{H}$ amplifier is used for conversions. Scanning of inputs is disabled, and an interrupt occurs after every sample/convert sequence (1 conversion result). The A/D conversion clock is Tcy/2.
Since sampling is started manually by setting the SAMP bit (ADCON1<1>) after each conversion is complete, the auto-sample time bits, $\mathrm{SAMC}<4: 0>$ (ADCON3<12:8>), are ignored. Moreover, since the start of conversion (i.e., end of sampling) is also triggered manually, the SAMP bit needs to be cleared each time a new sample needs to be converted.

Example 17-7: A/D Initialization Code Example

17.22 A/D Conversion Speeds

The dsPIC30F 10-bit A/D converter specifications permit a maximum 1 Msps sampling rate. The table below summarizes the conversion speeds for the dsPIC30F 10-bit A/D converter and the required operating conditions.
Table 17-9: 10 -bit Conversion Rate Parameters

dsPIC30F 10-bit A/D Converter Conversion Rates						
A/D Speed	TAD Minimum	Sampling Time Min	$\mathrm{R}_{\mathrm{s}} \mathrm{Max}$	Vdd	Temperature	A/D Channels Configuration
Up to 1 MSps ${ }^{(1)}$	83.33 ns	12 TAD	500Ω	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Up to 750 ksps ${ }^{(1)}$	95.24 ns	2 TAd	500Ω	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Up to 600 $\mathrm{ksps}^{(1)}$	138.89 ns	12 TAD	500Ω	3.0 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Up to 500 ksps	153.85 ns	1 TAD	$5.0 \mathrm{k} \Omega$	4.5 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Up to 300 ksps	256.41 ns	1 TAD	$5.0 \mathrm{k} \Omega$	3.0 V to 5.5 V	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	

Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 17-25 for recommended circuit.

The following figure depicts the recommended circuit for the conversion rates above 500 ksps . The dsPIC30F6010 is shown as an example.

Figure 17-25: A/D Converter Voltage Reference Schematic

The configuration procedures below give the required setup values for the conversion speeds above 500 ksps .

17.22.1 1 Msps Configuration Guideline

The configuration for 1 Msps operation is dependent on whether a single input pin is to be sampled or whether multiple pins will be sampled.

17.22.1.1 Single Analog Input

For conversions at 1 Msps for a single analog input, at least two sample and hold channels must be enabled. The analog input multiplexer must be configured so that the same input pin is connected to both sample and hold channels. The A/D converts the value held on one S / H channel, while the second S / H channel acquires a new input sample.

17.22.1.2 Multiple Analog Inputs

The A/D converter can also be used to sample multiple analog inputs using multiple sample and hold channels. In this case, the total 1 Msps conversion rate is divided among the different input signals. For example, four inputs can be sampled at a rate of 250 ksps for each signal or two inputs could be sampled at a rate of 500 ksps for each signal. Sequential sampling must be used in this configuration to allow adequate sampling time on each input.

17.22.1.3 1 Msps Configuration Procedure

The following configuration items are required to achieve a 1 Msps conversion rate.

- Comply with conditions provided in Table 17-9.
- Connect external VREF+ and VREF- pins following the recommended circuit shown in Figure 17-26.
- Set SSRC<2:0> = 111 in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Enable sequential sampling by clearing the SIMSAM bit in the ADCON1 register.
- Enable at least two sample and hold channels by writing the CHPS $<1: 0>$ control bits in the ADCON2 register.
- Configure at least 2 conversions between interrupts, since at least two sample and hold channels, by writing the $\mathrm{SMPI}<3: 0>$ control bits in the ADCON2 register.
- Configure the A/D clock period to be:

$$
\frac{1}{12 \times 1,000,000}=83.33 \mathrm{~ns}
$$

by writing to the ADCS<5:0> control bits in the ADCON3 register.

- Configure the sampling time to be 2 TAD by writing: SAMC<4:0> $=00010$.
- Select at least two channels per analog input pin by writing to the ADCHS register.

The following figure shows the timing diagram of the A/D converting one input pin using two sample and holds. The TAD selection, in conjunction with the guidelines described above, allows a conversion speed of 1 Msps . See Example 17-8 for code example.

Figure 17-26: Converting 1 Input Pin Using Two Channels at 1Msps, Auto-Sample Start, 12 TAD Sampling Time

Example 17-8: Converting 2 Channels, Auto-Sample Start, TAD Conversion Start, Sequential Sampling Code

```
ADPCFG = 0xFFFB; // all PORTB = Digital; RB2 = analog
ADCON1 = 0x00E0; // SSRC bit = 111 implies internal
    // counter ends sampling and starts
    // converting.
ADCHS = 0x0002; // Connect RB2/AN2 as CHO input and also connect
RB2 / AN2
    // to positive CH1 input.
    // in this example RB2/AN2 is the input to two
channels.
ADCSSL = 0;
ADCON3 = 0x0C04; // Sample time = 12Tad = 83.33 ns @ MIPS
    // which will give 1 / (12 * 83.33 ns) = 1 Msps
ADCON2 = 0x6104; // Select external VREF+ and VREF- pins, convert CHO
and
    // CH1, Interrupt after every 2 samples
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
{
    IFSObits.ADIF = 0; // clear interrupt
    while (IFSObits.ADIF); // conversion done?
    ADCValue = ADCBUFO; // save the ADC values
} // repeat
```


17.22.2 750 ksps Configuration Guideline

The following configuration items are required to achieve a 750 ksps conversion rate. This configuration assumes that a single analog input is to be sampled.

- Comply with conditions provided in Table 17-9.
- Connect external VREF+ and VreF- pins following the recommended circuit shown in Figure 17-27.
- Set $\mathrm{SSRC}<2: 0>=111$ in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Enable one sample and hold channel by setting CHPS<1:0> = 00 in the ADCON2 register.
- Write the $\mathrm{SMPI}<3: 0>$ control bits in the ADCON2 register for the desired number of conversions between interrupts.
- Configure the A/D clock period to be:

$$
\frac{1}{(12+2) \times 750,000}=95.24 \mathrm{~ns}
$$

by writing to the ADCS $<5: 0>$ control bits in the ADCON3 register.

- Configure the sampling time to be 2 TAD by writing: SAMC<4:0> $=00010$.

The following figure shows the timing diagram of the A/D running at 750 ksps . The TAD selection, in conjunctin with the guidelines described above, allows a conversion speed of 750 ksps . See Example 17-9 for code example.

Figure 17-27: Converting 1 Channel at 750 ksps, Auto-Sample Start, 2 TAD Sampling Time

Example 17-9: Converting 1 Channel at 750 ksps, Auto-Sample Start, 2 TAD Sampling Time Code Example

17.22.3 600 ksps Configuration Guideline

The configuration for 600 ksps operation is dependent on whether a single input pin is to be sampled or whether multiple pins will be sampled.

17.22.3.1 Single Analog Input

When performing conversions at 600 ksps for a single analog input, at least two sample and hold channels must be enabled. The analog input multiplexer must be configured so that the same input pin is connected to both sample and hold channels. The A/D converts the value held on one S/H channel, while the second S / H channel acquires a new input sample.

17.22.3.2 Multiple Analog Inputs

The A/D converter can also be used to sample multiple analog inputs using multiple sample and hold channels. In this case, the total 600 ksps conversion rate is divided among the different input signals. For example, four inputs can be sampled at a rate of 150 ksps for each signal or two inputs could be sampled at a rate of 300 ksps for each signal. Sequential sampling must be used in this configuration to allow adequate sampling time on each input.

17.22.3.3 600 ksps Configuration Items

The following configuration items are required to achieve a 600 ksps conversion rate.

- Comply with conditions provided in Table 17-9.
- Connect external VREF+ and VreF- pins following the recommended circuit shown in Figure 17-10.
- Set SSRC<2:0> = 111 in the ADCON1 register to enable the auto convert option.
- Enable automatic sampling by setting the ASAM control bit in the ADCON1 register.
- Enable sequential sampling by clearing the SIMSAM bit in the ADCON1 register.
- Enable at least two sample and hold channels by writing the CHPS $<1: 0>$ control bits in the ADCON2 register.
- Configure at least 2 conversions between interrupts, since at least two sample and hold channels, by writing the $\mathrm{SMPI}<3: 0>$ control bits in the ADCON2 register.
- Configure the A/D clock period to be:

$$
\frac{1}{12 \times 600,000}=138.89 \mathrm{~ns}
$$

by writing to the $\mathrm{ADCS}<5: 0>$ control bits in the ADCON3 register.

- Configure the sampling time to be 2 TAD by writing: SAMC<4:0> $=00010$.
- Select at least two channels per analog input pin by writing to the ADCHS register.

The timing diagram for the 600 ksps extended rate is the same as for the 1 Msps shown in Figure 17-10. See Example 17-10 for code example for 600 ksps A/D operation.

Example 17-10: Converting 2 Channels, Auto-Sample Start, TAD Conversion Start, Sequential Samplling Code

```
ADPCFG = 0xFFFB; // all PORTB = Digital; RB2 = analog
ADCON1 = 0x00E0; // SSRC bit = 111 implies internal
    // counter ends sampling and starts
    // converting.
ADCHS = 0x0002; // Connect RB2/AN2 as CHO input and also connect
RB2 / AN2
    // to positive CH1 input.
    // in this example RB2/AN2 is the input to two
channels.
ADCSSL = 0;
ADCON3 = 0x0C04; // Sample time = 12Tad = 138.89 ns @ 18 MIPS
    // which will give 1 / (12 * 138.89 ns) = 600 ksps
ADCON2 = 0x6104; // Select external VREF+ and VREF- pins, convert CH0
and
    // CH1, Interrupt after every 2 samples
ADCON1bits.ADON = 1; // turn ADC ON
while (1) // repeat continuously
{
    IFSObits.ADIF = 0; // clear interrupt
    while (IFSObits.ADIF); // conversion done?
    ADCValue = ADCBUF0; // save the ADC values
}
    // repeat
```


17.23 Operation During Sleep and Idle Modes

Sleep and Idle modes are useful for minimizing conversion noise because the digital activity of the CPU, buses and other peripherals is minimized.

17.23.1 CPU Sleep Mode without RC A/D Clock

When the device enters Sleep mode, all clock sources to the module are shutdown and stay at logic 'o'.
If Sleep occurs in the middle of a conversion, the conversion is aborted unless the A/D is clocked from its internal RC clock generator. The converter will not resume a partially completed conversion on exiting from Sleep mode.
Register contents are not affected by the device entering or leaving Sleep mode.

17.23.2 CPU Sleep Mode with RC A/D Clock

The A / D module can operate during Sleep mode if the A / D clock source is set to the internal A / D $R C$ oscillator ($A D R C=1$). This eliminates digital switching noise from the conversion. When the conversion is completed, the DONE bit will be set and the result loaded into the A/D result buffer, ADCBUF.
If the A / D interrupt is enabled (ADIE $=1$), the device will wake-up from Sleep when the A / D interrupt occurs. Program execution will resume at the A/D Interrupt Service Routine if the A/D interrupt is greater than the current CPU priority. Otherwise, execution will continue from the instruction after the PWRSAV instruction that placed the device in Sleep mode.
If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.
To minimize the effects of digital noise on the A/D module operation, the user should select a conversion trigger source that ensures the A/D conversion will take place in Sleep mode. The automatic conversion trigger option can be used for sampling and conversion in Sleep $(S S R C<2: 0>=111)$. To use the automatic conversion option, the ADON bit should be set in the instruction prior to the PWRSAV instruction.

Note: For the A/D module to operate in Sleep, the A/D clock source must be set to RC (ADRC = 1).

17.23.3 A/D Operation During CPU Idle Mode

For the A/D, the ADSIDL bit (ADCON1<13>) selects if the module will stop on Idle or continue on Idle. If $\operatorname{ADSIDL}=0$, the module will continue normal operation when the device enters Idle mode. If the A / D interrupt is enabled ($\mathrm{ADIE}=1$), the device will wake up from Idle mode when the A/D interrupt occurs. Program execution will resume at the A/D Interrupt Service Routine if the A / D interrupt is greater than the current CPU priority. Otherwise, execution will continue from the instruction after the PWRSAV instruction that placed the device in Idle mode.
If $\operatorname{ADSIDL}=1$, the module will stop in Idle. If the device enters Idle mode in the middle of a conversion, the conversion is aborted. The converter will not resume a partially completed conversion on exiting from Idle mode.

Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off, and any conversion in progress is aborted. All pins that are multiplexed with analog inputs will be configured as analog inputs. The corresponding TRIS bits will be set.
The values in the ADCBUF registers are not initialized during a Power-on Reset. ADCBUF0...ADCBUFF will contain unknown data.

17.25 Special Function Registers Associated with the 10-bit A/D Converter

The following table lists dsPIC30F 10-bit A/D Converter Special Function registers, including their addresses and formats. All unimplemented registers and/or bits within a register read as zeros.

File Name	ADR	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		Reset	States	
INTCON1	0080	NSTDIS	-	-	-	-	OVATE	OVBTE	COVTE	-	-	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000	0000	0000	0000
INTCON2	0082	ALTIVT	-	-	-	-	-	-	-	-	-	-	INT4EP	INT3EP	INT2EP	INT1EP	INTOEP	0000	0000	0000	0000
IFSO	0084	CNIF	MI2CIF	SI2CIF	NVMIF	ADIF	U1TXIF	U1RXIF	SPI1IF	T3IF	T2IF	OC2IF	IC2IF	T1IF	OC1IF	IC1IF	INT0	0000	0000	0000	0000
IEC0	008C	CNIE	MI2CIE	SI2CIE	NVMIE	ADIE	U1TXIE	U1RXIE	SPI1IE	T3IE	T21E	OC2IE	IC2IE	T1IE	OC1IE	IC1IE	INTOIE	0000	0000	0000	0000
IPC2	0098	-	ADIP<2:0>			-	U1TXIP<2:0>			-	U1RXIP<2:0>			-	SPI1 IP<2:0>			0100	0100	0100	0100
ADCBUF0	0280	ADC Data Buffer 0																uuuu	uuuu	uuuu	uuuu
ADCBUF1	0282	ADC Data Buffer 1																uuuu	uuuu	uuuu	uuuu
ADCBUF2	0284	ADC Data Buffer 2																uuuu	uuuu	uuuu	uuuu
ADCBUF3	0286	ADC Data Buffer 3																uuuu	uuuu	uuuu	uuuu
ADCBUF4	0288	ADC Data Buffer 4																uuuu	uuuu	uuuu	uuuu
ADCBUF5	028A	ADC Data Buffer 5																uuuu	uuuu	uuuu	uuuu
ADCBUF6	028C	ADC Data Buffer 6																uuuu	uuuu	uuuu	uuuu
ADCBUF7	028E	ADC Data Buffer 7																uuuu	uuuu	uuuu	uuuu
ADCBUF8	0290	ADC Data Buffer 8																uuuu	uuuu	uuuu	uuuu
ADCBUF9	0292	ADC Data Buffer 9																uuuu	uuuu	uuuu	uuuu
ADCBUFA	0294	ADC Data Buffer 10																uuuu	uuuu	uuuu	uuuu
ADCBUFB	0296	ADC Data Buffer 11																uuuu	uuuu	uuuu	uuuu
ADCBUFC	0298	ADC Data Buffer 12																uuuu	uuuu	uuuu	uuuu
ADCBUFD	029A	ADC Data Buffer 13																uuuu	uuuu	uuuu	uuuu
ADCBUFE	029C	ADC Data Buffer 14																uuuu	uuuu	uuuu	uuuu
ADCBUFF	029E	ADC Data Buffer 15																uuuu	uuuu	uuuu	uuuu
ADCON1	02A0	ADON	ADFRZ	ADSIDL	-	-	-	FORM[1:0]		SSRC[2:0]			-	SIMSAM	ASAM	SAMP	CONV	0000	0000	0000	0000
ADCON2	02A2	VCFG[2:0]			OFFCAL	-	CSCNA	CHPS	[1:0]	BUFS	-	SMPI[3:0]				BUFM	ALTS	0000	0000	0000	0000
ADCON3	02A4	-	-	-	SAMC[4:0]					ADRC	-	ADCS[5:0]						0000	0000	0000	0000
ADCHS	02A6	CHXNB[1:0]		CHXSB	CHONB	CH0SB[3:0]				CHXNA[1:0]		CHXSA	CHONA	CHOSA[3:0]				0000	0000	0000	0000
ADPCFG	02A8	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000	0000	0000	0000
ADCSSL	02AA	ADC Input Scan Select Register																0000	0000	0000	0000
Legend: u = unknown																					
Note:	All interrupt sources and their associated control bits may not be available on a particular device. Refer to the device data sheet for details.																				

