Práctica 4 (2° C.): Diseño de sistemas de control mediante lugar de las raíces (I)

1. Objetivos

Aprender a diseñar sistemas de control por el método del lugar de las raíces asistido por la herramienta sisotool de Matlab.

2. Conocimientos previos

- Diseño de reguladores por el método del lugar de las raíces.
- Uso de la herramienta sisotool de Matlab (práctica anterior).

3. Descripción de la práctica

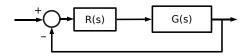
Esta práctica es evaluable. En este guión se propone un diseño que podrá realizarse a modo de ensayo previamente a la sesión práctica. En la sesión práctica se propondrá el mismo problema con datos de partida diferentes en un informe impreso que deberá completarse y entregarse. También tendrán que contestarse de forma oral las cuestiones que pueda plantear el profesor de forma individual.

3.1. Datos de partida

Función de transferencia de la planta

La función de transferencia de la planta a controlar se construye sustituyendo los dígitos ABCDEFGH con los números del DNI ajustados a la derecha y rellenando con un cero por la izquierda si es necesario (ver ejemplo al final del documento):

$$DNI: \overline{A}\,\overline{B}\cdot\overline{C}\,\overline{D}\,\overline{E}\cdot\overline{F}\,\overline{G}\,\overline{H} \qquad G(s) = \frac{2\underline{C}\underline{D}}{1\underline{F}s^2 + 4\underline{G}s + 1\underline{H}}$$


Especificaciones de diseño

Las especificaciones de diseño vienen dadas por un tiempo de pico t_p y una sobreoscilación M_p , que se obtienen usando el dígito E del DNI (según el apartado anterior) a partir de las siguientes expresiones:

$$t_p = \frac{1, \underline{E}}{2,7} \,\mathrm{s} \qquad M_p = \frac{2\underline{E}}{1,9} \,\%$$

3.2. Enunciado del problema

Obtener el regulador R(s) real más sencillo para conseguir, en cadena cerrada con el esquema de regulación de la figura para la planta G(s), una respuesta a escalón unitario con las especificaciones de tiempo de pico t_p y sobreoscilación M_p dadas. **NOTA**: usar el criterio de la vertical para colocar el polo y el cero de la acción diferencial.

Una vez realizado el diseño, y ayudado por la herramienta sisotool cuando sea necesario, se pide:

- 1. Dibujar la respuesta a escalón unitario de la planta G(s).
- 2. Dibujar el lugar de las raíces cuando R(s) es un regulador proporcional, indicando la localización del punto de diseño.
- 3. Indicar el valor de las coordenadas en el plano complejo del punto de diseño.
- 4. Indicar el valor del centroide o punto de corte de las asíntotas con el eje real para el lugar de las raíces del apartado 2.
- 5. Dibujar el lugar de las raíces cuando R(s) es el regulador finalmente obtenido, indicando la localización del punto de diseño.
- 6. Indicar el valor del ángulo (en grados) aportado por el par polo-cero de la acción diferencial del regulador R(s) final.
- 7. Indicar la función de transferencia del regulador R(s) final.
- 8. Dibujar la respuesta a escalón unitario del sistema en cadena cerrada.
- 9. ¿Cuáles son los valores del tiempo de pico (en segundos) y la sobrescilación (en tanto por ciento) de la respuesta a escalón unitario del sistema en cadena cerrada?
- 10. Calcular el error de posición del sistema en cadena cerrada (en tanto por ciento).

4. Ejemplo de obtención de datos de partida

$$DNI: \frac{0}{A}\frac{9}{B}.\frac{4}{C}\frac{5}{D}\frac{6}{E}.\frac{7}{F}\frac{8}{G}\frac{9}{H} \qquad G(s) = \frac{245}{17s^2 + 48s + 19}$$

$$t_p = \frac{1,6}{2,7} = 0,5926 \,\mathrm{s}$$
 $M_p = \frac{26}{1,9} = 13,7 \,\%$