
PLCopen
Standardization in Industrial Control Programming

IEC 1131-3: a standard programming resource

IEC 1131-3 is the first real endeavor to standardize
programming languages for industrial automation. With
its world wide support, it is independent of any single
company.

IEC 1131-3 is the third part of the IEC 1131 family. This
consists of:
• Part 1: General Overview
• Part 2 Hardware
• Part 3 Porgramming Languages
• Part 4 User Guidelines
• Part 5 Communication

There are many ways to look at part 3 of this standard.
Just to name a few:
• the result of the Task Force 3, Programming

Languages, within IEC TC65 SC65B
• the result of hard work by 7 international

companies adding tens of years of experience in
the field of industrial automation

• approx. 200 pages of text, with 60-something tables,
including features tables

• the specification of the syntax and semantics of a
unified suite of programming languages, including
the overall software model and a structuring
language.

Another elegant view is by splitting the standard in two
parts (see figure 1):
1. Common Elements
2. Programming Languages

The IEC 1131-3 Standard

Common Elements

Programming Languages

Let’s look more in detail to these parts:

Common Elements
Data Typing
Within the common elements, the data types are
defined. Data typing prevents errors in an early stage. It
is used to define the type of any parameter used. This
avoids for instance dividing a Date by an Integer.
Common datatypes are Boolean, Integer, Real and Byte
and Word, but also Date, Time_of_Day and String.
Based on these, one can define own personal data
types, known as derived data types. In this way one
can define an analog input channel as data type, and re-
use this over an over again.

Variables
Variables are only assigned to explicit hardware
addresses (e.g. input and outputs) in configurations,
resources or programs. In this way a high level of
hardware independency is created, supporting the
reusability of the sofware.
The scope of the variables are normally limited to the
organization unit in which they are declared, e.g. local.
This means that their names can be reused in other
parts without any conflict, eleminating another source
of errors, e.g. the scratchpad. If the variables should
have global scope, they have to be declared as such
(VAR_GLOBAL). Parameters can be assigned an initial
value at start up and cold restart, in order to have the
right setting.

Configuration, Resources and Tasks
To understand these better, let us look at the software
model, as defined in the standard (see below).

Access path

Execution
control path

FBTask

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Resource Resource

Configuration

Function
Block

At the highest level, the entire software required to
solve a particular control problem can be formulated as

a Configuration. A configuration is specific to a
particular type of control system, including the
arrangement of the hardware, i.c. processing resources,
memory addresses for I/O channels and system
capabilities.
Within a configuration one can define one or more
Resources. One can look at a resource as a processing
facility that is able to execute IEC programs.
Within a resource, one or more Tasks can be defined.
Tasks control the execution of a set of programs and/or
function blocks. These can either be executed
periodically or upon the occurrence of a specified
trigger, such as the change of a variable.
Programs are built from a number of different software
elements written in any of the IEC defined languages.
Typically, a program consist of a network of Functions
and Function Blocks, which are able to exchange data.
Function and Function Blocks are the basic building
blocks, containing a datastructure and an algorithm.

Let’s compare this to a conventional PLC: this contains
one resource, running one task, controlling one
program, running in a closed loop. IEC 1131-3 adds
much to this, making it open to the future. A future that
includes multi-processing and event driven programs.
And this future is not so far: just look at distributed
systems or real-time control systems. IEC 1131-3 is
suitable for a broad range of applications, without
having to learn additional programming languages.

Program Organization Units
Within IEC 1131-3, the Programs, Function Blocks and
Functions are called Program Organization Units, POUs.

Functions
IEC has defined standard functions and user defined
functions. Standard functions are for instance
ADD(ition), ABS (absolute), SQRT, SINus and
COSinus. User defined functions, once defined, can be
used over and over again.

Function Blocks, FBs
Function Blocks are the equivalent to Integrated
Circuits, ICs, representing a specialized control
function. They contain data as well as the algorithm, so
they can keep track of the past (which is one of the
differences w.r.t. Functions). They have a well defined
interface and hidden internals, like an IC or black box. In
this way they give a clear separation between different
levels of programmers, or maintenance people.
A temperature control loop, or PID, is an excellent
example of a Function Block. Once defined, it can be
used over and over again, in the same program,
different programs, or even different projects. This
makes them highly re-usable.
Function Blocks can be written in any of the IEC
languages, and in most cases even in “C”. It this way

they can be defined by the user. Derived Function
Blocks are based on the standard defined FBs, but also
completely new, customized FBs are possible within the
standard: it just provides the framework.

Programs
With the above mentioned basic building blocks, one
can say that a program is a network of Functions and
Function Blocks. A program can be written in any of the
defined programming languages.

Sequential Function Chart, SFC

Step 1 N FILL

Step 3

Step 2 S Empty

Transition 1

Transition 2

SFC describes graphically the sequential behaviour of a
control program. It is derived from Petri Nets and IEC
848 Grafcet, with the changes necessary to convert the
representation from a documentation standard to a set
of execution control elements.
SFC structures the internal organization of a program,
and helps to decompose a control problem into
manageable parts, while maintaining the overview.
SFC consists of Steps, linked with Action Blocks and
Transitions.. Each step represents a particular state of
the systems being controlled. A transition is associated
with a condition, which, when true, causes the step
before the transition to be deactiviated, and the next
step to be activated. Steps are linked to action blocks,
performing a certain control action. Each element can be
programmed in any of the IEC languages, including SFC
itself.
One can use alternative sequences and even parallel
sequences, such as commonly required in batch
applications. For instance, one sequence is used for the
primary process, and the second for monitoring the
overall operating constraints.
Because of its general structure, SFC provides also a
communication tool, combining people of different
backgrounds, departments or countries.

Programming Languages
Within the standard four programming languages are
defined. This means that their syntax and semantics
have been defined, leaving no room for dialects. Once
you have leraned them, you can use a wide variety of
systems based on this standard.
The languages consist of two textual and two graphical
versions:
Textual:

• Instruction List, IL
• Structured Text, ST

Graphical:
• Ladder Diagram, LD
• Function Block Diagram, FBD

Instruction List (IL) Structured Text (ST)

Function Block Diagram (FBD) Ladder Diagram (LD)

LD A

ANDN B

ST C

C:= A AND NOT B

 A B C

-| |--|/|----------------()

AND

A C

B

In the above figure, all four languages describe the
same simple program part.
The choice of programming language is dependent on:
• the programmers’ background
• the problem at hand
• the level of describing the problem
• the strucuture of the control system
• the interface to other people / departments

All four languages are interlinked: they provide a
common suite, with a link to existing experience. In this
way they also provide a communication tool, combining
people of different backgrounds.

Ladder Diagram has its roots in the USA. It is based
on the graphical presentation of Relay Ladder Logic.
Instruction List is its European counterpart. As textual
language, it resembles assembler.
Function Block Diagram is very common to the
process industry. It expresses the behaviour of
functions, function blocks and programs as a set of
interconnected graphical blocks, like in electronic circuit
diagrams. It looks at a system in terms of the flow of
signals between processing elements.
Structured Text is a very powerfull language with its
roots in Ada, Pascal and “C”. It can be used excelently
for the definition of complex function blocks, which can
be used within any of the other languages.

Top-down vs. bottom-up

Common Elements

Programming Languages

Top Down

Bottom Up

Also, the standard allows two ways of developing your
program: top down and bottom up. Either you specify
your whole application and divide it into sub parts,
declare your variables, and so on. Or you start
programming your application at the bottom, for
instance via derived functions and function blocks.
Whichever you choose, the development environment
will help you through the whole process.

Implementations
The overal requirements of IEC 1131-3 are not easy to
fulfill. For that reason, the standard allows partial
implementations in various aspects. This covers the
number of supported languages, functions and function
blocks. This leaves freedom at the supplier side, but a
user should be well aware of it during his selection
process. Also, a new release can have a dramatically
higher level of implementation.

Many current IEC programming environments offer
everything you expect form modern environments:
mouse operation, pull down menus, graphical
programming screens, support for multiple windows,
built in hypertext functions, verification during design.
Please be aware that this is not specified within the
standard itself: it is one of the parts where suppliers can
differentiate.

Conclusion
The technical implications of the IEC 1131-3 standard
are high, leaving enough room for growth and
differentiation. This make this standard suitable to
evolve well into the next century.
IEC 1131-3 will have a great impact on the whole
industrial control industry. It certainly will not restrict
itself to the conventional PLC market. Nowadays, one
sees it adopted in the motion control market, distributed
systems and softlogic / PC based control systems,
including SCADA packages. And the areas are still
growing.
Having a standard over such a broad application area,
brings numerous benefits for users / programmers. The
benefits for adopting this standard are various,
depending on the application areas. Just to name a few
for the mindsetting:

• reduced waste of human resources, in training,
debugging, maintenance and consultancy

• creating a focus to problem solving via a high level
of software reusability

• reduced misunderstanding and errors
• programming techniques usable in a broad

environment: general industrial control
• combining different components from different

programs, projects, locations, companies and/or
countries

For more information, please contact PLCopen directly
or via the World Wide Web. You can reach PLCopen at:

PO Box 2015
NL 5300 CA Zaltbommel
The Netherlands

Tel: +31-418-541139
Fax: +31-418-516336

www.plcopen.org

