Estrategias de control de rectificadores activos trifásicos

SEMINARIOS DE ELECTRÓNICA DE POTENCIA - DIEECS D. Joaquín González Norniella

Contenido

Introducción

Rectificadores activos trifásicos controlados en tensión (VSR's)

Teoría p-q

Control Directo de Potencia (DPC)

DPC basado en Flujo Virtual (VF-DPC)

DPC vs. VF-DPC

Hitos y líneas de investigación

Introducción

Rectificadores activos trifásicos controlados en tensión (VSR's)

Topología y funcionamiento

Rectificadores activos trifásicos controlados en tensión (VSR's)

Vectores de estado de conmutación

Vector	Estado de conmutación					
V0	(000)					
V1	(100)					
V2	(110)					
V3	(010)					
V4	(011)					
V5	(001)					
V6	(101)					
V7	(111)					

Teoría p-q

Diagrama de bloques básico y funcionamiento

$$\begin{pmatrix} i_{\alpha} \\ i_{\beta} \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} i_{\alpha} \\ i_{b} \\ i_{c} \end{pmatrix}$$

$$\begin{pmatrix} v_{\alpha_{est}} \\ v_{\beta_{est}} \end{pmatrix} = \frac{1}{i_{\alpha}^2 + i_{\beta}^2} \begin{pmatrix} i_{\alpha} & -i_{\beta} \\ i_{\beta} & i_{\alpha} \end{pmatrix} \begin{pmatrix} p_{est} \\ q_{est} \end{pmatrix}$$

 $p_{est} = v_a i_a + v_b i_b + v_c i_c = L \left(\frac{di_a}{dt} i_a + \frac{di_b}{dt} i_b + \frac{di_c}{dt} i_c \right) + v_{dc} (S_a i_a + S_b i_b + S_c i_c)$

$$\begin{aligned} q_{est} &= \frac{1}{\sqrt{3}} ((v_b - v_c)i_a + (v_c - v_a)i_b + (v_a - v_b)i_c) \\ &= \frac{1}{\sqrt{3}} \Big\{ 3L \left(\frac{di_a}{dt}i_c - \frac{di_c}{dt}i_a \right) - v_{dc} [S_a(i_b - i_c) + S_b(i_c - i_a) + S_c(i_a - i_b)] \Big\} \end{aligned}$$

La estimación de tensiones y potencias instantáneas es función de las derivadas de las corrientes y de los estados de conmutación

Los estados de conmutación son función de la posición del vector espacial de tensiones y de las salidas de los comparadores de histéresis

$$\begin{split} S_q &= 1 \, si \, q - q^* < -H_q \\ S_q &= 0 \, si \, q - q^* > +H_q \\ S_p &= 1 \, si \, p - p^* < -H_p \\ S_p &= 0 \, si \, p - p^* > +H_p \end{split}$$

CONSTRUCCIÓN DE LA TABLA DE CONMUTACIÓN

CONSTRUCCIÓN DE LA TABLA DE CONMUTACIÓN

CONSTRUCCIÓN DE LA TABLA DE CONMUTACIÓN

Sp	Sq	Θ1	Θ ₂	O 3	Θ_4	$\boldsymbol{\varTheta}_5$	$\boldsymbol{\varTheta}_6$	Ø 7	0 8	$oldsymbol{\Theta}_{g}$	Ø 10	Ø 11	0 ₁₂
1	0	5	5	6	6	1	1	2	2	3	3	4	4
	1	3	4	4	5	5	6	6	1	1	2	2	3
0	0	6	1	1	2	2	3	3	4	4	5	5	6
	1	1	2	2	3	3	4	4	5	5	6	6	1

MODELO IMPLEMENTADO

RESULTADOS EXPERIMENTALES

Diseño incorrecto de la tabla de conmutación

Tensiones y corrientes

RESULTADOS EXPERIMENTALES

Diseño incorrecto de la tabla de conmutación

Potencia activa instantánea

RESULTADOS EXPERIMENTALES

Diseño incorrecto de la tabla de conmutación

Potencia reactiva instantánea

RESULTADOS EXPERIMENTALES

Diseño incorrecto de la tabla de conmutación

Tensión en el bus

RESULTADOS EXPERIMENTALES

Diseño incorrecto de la tabla de conmutación

Control Directo de Potencia (DPC) RESULTADOS EXPERIMENTALES

RESULTADOS EXPERIMENTALES

OPTIMIZACIÓN DEL MODELO

FUNCIONAMIENTO EN SECUENCIA INVERSA

RESULTADOS EXPERIMENTALES

OPTIMIZACIÓN DEL MODELO

FUNCIONAMIENTO EN MODO INVERSOR

Fundamento

Diagrama de bloques básico

$$\underline{\psi} = \int \underline{v} \, dt = \begin{pmatrix} \psi_{\alpha} \\ \psi_{\beta} \end{pmatrix} = \begin{pmatrix} \int v_{\alpha} dt \\ \int v_{\beta} dt \end{pmatrix} = \begin{pmatrix} \int (v_{conv_{\alpha}} + L \frac{di_{\alpha}}{dt}) dt \\ \int (v_{conv_{\beta}} + L \frac{di_{\beta}}{dt}) dt \end{pmatrix}$$

$$\underline{v_{conv}} = \begin{pmatrix} v_{conv\alpha} \\ v_{conv\beta} \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{2}{3}} v_{dc} \left(S_a - \frac{1}{2} (S_b + S_c) \right) \\ \frac{1}{\sqrt{2}} v_{dc} (S_b - S_c) \end{pmatrix}$$

$$\underline{i} = \begin{pmatrix} i_{\alpha} \\ i_{\beta} \end{pmatrix} = \sqrt{\frac{2}{3}} \begin{pmatrix} \frac{3}{2} & 0 \\ \frac{\sqrt{3}}{2} & \sqrt{3} \end{pmatrix} \begin{pmatrix} i_{\alpha} \\ i_{b} \end{pmatrix}$$

$$p = \frac{d\psi}{dt}\Big|_{\alpha}i_{\alpha} + \frac{d\psi}{dt}\Big|_{\beta}i_{\beta} + \omega(\psi_{\alpha}i_{\beta} - \psi_{\beta}i_{\alpha}) \approx \omega(\psi_{\alpha}i_{\beta} - \psi_{\beta}i_{\alpha})$$

$$q = -\frac{d\psi}{dt}\Big|_{\alpha}i_{\beta} + \frac{d\psi}{dt}\Big|_{\beta}i_{\alpha} + \omega(\psi_{\alpha}i_{\alpha} + \psi_{\beta}i_{\beta}) \approx \omega(\psi_{\alpha}i_{\alpha} + \psi_{\beta}i_{\beta})$$

Los integradores representan un filtro pasabajos natural y las derivadas de las corrientes no están presentes

La relación de perpendicularidad entre los vectores espaciales de flujo y tensión permite utilizar las mismas tablas que en DPC

MODELO IMPLEMENTADO

ALIMENTACIÓN DISTORSIONADA

FASE a

ALIMENTACIÓN DISTORSIONADA

MAYOR ROBUSTEZ DEL VF-DPC FRENTE AL DPC

ALIMENTACIÓN DESEQUILIBRADA

ALIMENTACIÓN DESEQUILIBRADA

SENSIBILIDAD A IMPRECISIONES EN EL VALOR DE LA BOBINA

DPC VF-DPC

SENSIBILIDAD A IMPRECISIONES EN EL VALOR DE LA BOBINA

MEJOR COMPORTAMIENTO DEL VF-DPC

SENSIBILIDAD A IMPRECISIONES EN EL VALOR DE LA BOBINA

L'=L-20%L

LAS IMPRECISIONES EN L SE REFLEJAN EN q

COMPORTAMIENTO DINÁMICO

Escalones de demanda de p

p

COMPORTAMIENTO DINÁMICO

Escalones de demanda de p

COMPORTAMIENTO DINÁMICO

Escalones de demanda de p

v-i

COMPORTAMIENTO DINÁMICO

Escalones de demanda de p

EL COMPORTAMIENTO DINÁMICO ES SIMILAR

Ventajas de VF-DPC frente a DPC

- Frecuencia de muestreo necesaria menor
- Algoritmos más sencillos
- Buen comportamiento ante sistemas distorsionados
- Menor sensibilidad a errores en parámetros
- Estimación de potencias menos sensible al ruido
- No es necesaria la derivación de las corrientes

Desventajas de VF-DPC frente a VOC

- Frecuencia de conmutación variable
- Frecuencia de muestreo elevada
- Se requieren dispositivos de gran rapidez

Ventajas de VF-DPC y DPC frente a VOC

- Algoritmos más sencillos
- Ausencia de bucles de corriente
- No se requieren transformaciones a coordenadas rotatorias ni bloques *PI*
- No se necesitan bloques separados de modulación de tensiones *PWM*
- Mejor comportamiento dinámico
- No se necesita la descomposición del control en elementos activos y reactivos

Estudio de teorías de potencia y su aplicación

Optimización del modelo DPC

- Modelo con buena dinámica y baja frecuencia de conmutación
- Modelo adecuado para las dos secuencias de fases
- Modelo con funcionamiento correcto en los dos modos de trabajo
- Influencia de la tensión del bus de continua
- Método de sintonización automática de la bobina (algoritmo iterativo y método analítico)
- Otros: comparadores de histéresis de tres niveles, *PLL*, frecuencia de conmutación constante...

Optimización del modelo VF-DPC

- Aplicación de las mejoras del DPC
- Algoritmos de integración de tensiones

Estudio detallado de otros métodos de control

• VOC, VFOC, CSF-DPC, P-DPC, VF-P-DPC...

Construcción de un rectificador activo trifásico con apoyo en la plataforma *RT-LAB*

- Primeros pasos con RT-LAB
- Colaboración con el Grupo de Accionamientos Eléctricos y Electrónica de Potencia
- Colaboración con el Grupo de Sistemas Eléctricos de Potencia de la Universidad de Sevilla

Elaboración y publicación de artículos científicos

"Optimization of Direct Power Control of Three-Phase Active Rectifiers by using Multiple Switching Tables", ICREPQ, Marzo 2010

Método de sintonización automática de la bobina

MODELO IMPLEMENTADO

OBJETIVO: MÉTODO ANALÍTICO DE SINTONIZACIÓN

Plataforma RT-LAB: Primeros pasos

Plataforma RT-LAB: Primeros pasos

Estrategias de control de rectificadores activos trifásicos

GRACIAS POR SU ATENCIÓN

