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Then, using similar arguments to the ones in [3], it can be shown that
[3, Th. 1] holds.

Moreover, [3, Th. 2] holds with the following minor changes:
V
(p)
k (x(p); M) replacesV (p)

k )(x(p); x (p)) in statement 1. Statement
2 is unchanged. Statement 3 is modified to the following explicit
formula for the Gittins index:


(p)
N x

(p) = max
� 2�

M�0i;N (3)x
(p)

(�i;N(3)� �i; n(1))0 x(p) +M
(9)

where each vector�i; N 2 �
(p)
N is of the form

�i; k = [�0i; k(1) 0 �0i; k(3) 0 ]0

where�i; k(1); �i; k(3) 2
N

: (10)

Statement 3 above gives an explicit formula for the Gittins index of the
HMM multi-armed bandit problem. Recall thatx(p)k is the information
state computed by thepth HMM filter at time k. Given that we can
compute set of vectors�(p)

N , (9) gives an explicit expression for the
Gittins index(p)N (x

(p)
k ) at any timek for projectp. Note if all elements

of R(p) are identical, then(p)(x) = M for all x. Sections II-E, III,
and IV of [3], including the beam scheduling algorithm for a hybrid
sensor of Section III-C, still hold.

It is worthwhile noting that the above solution is computationally
simpler as the information state� is a2(Np + 1)-dimensional vector,
whereas the information state� considered in [3] is aN 2

p -dimensional
vector.
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Beamforming Using the Fractional Fourier Transform

İmam Şamil Yetik and Arye Nehorai

Abstract—We present a new method of beamforming using the fractional
Fourier transform (FrFT). This method encompasses the conventional min-
imum mean-squared error (MSE) beamforming in the frequency domain
or spatial domain as special cases. It is especially useful for applications
involving chirp signals such as signal enhancement problems with acceler-
ating sinusoidal sources where the Doppler effect generates chirp signals
and a frequency shift and active radar problems where chirp signals are
transmitted. Numerical examples demonstrate the potential advantage of
the proposed method over the ordinary frequency or spatial domain beam-
forming for a moving source scenario.

Index Terms—Beamforming, fractional fourier transform, sensor array
signal processing, time-frequency analysis.

I. INTRODUCTION

Beamforming is a widely used tool in sensor array signal pro-
cessing for various goals such as: signal enhancement, interference
suppression, and direction of arrival (DOA) estimation. Essentially,
beamforming is a filtering of signals arriving at distributed sensors.
The filtering weights at the sensors are chosen to achieve a certain
goal. Spatial filtering is useful in many applications since the signals
of interest and the interference are spatially separated. Generally, a
beamformer also includes temporal filtering along with the spatial
filtering to exploit spectral differences. It uses a weighted sum of the
sensor outputs at certain time instants. In other words, beamforming is
a linear combination of the temporal outputs of the multiple sensors.
Mathematically, we can express a general beamformer operation as

y(t) =

J

i=1

K�1

p=0

w
�
i;pxi(t� pT ) (1)

wherey(t) is the beamformer output,wi;p ’s are the weights of the
beamformer,xi(t)’s are the signals arriving at the sensors,K � 1 is
the number of delays in each of the sensor channels,J is the number of
sensors,T is the duration of a single time delay, and the superscript “�”
denotes complex conjugate. We can write (1) in vector form as follows:

y(t) = www
H
xxx(t) (2)

where

xxx(t) = [x1(t); x1(t� T ); . . . ; x1(t� (K � 1)T ); . . .

x2(t); . . . ; x (t� (K � 1)T )]T

www = [w1;0; w1;1; . . . ; w1;K�1; . . .

w2;0; . . . ; wJ;K�1]
H (3)

where the superscript “T ” denotes transpose and “H ” Hermitian con-
jugate. Some beamformers deviate from this general form to meet cer-
tain needs. For example, when the signal of interest is broadband, it
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Fig. 1. Rotational effect of the FrFT in the time-frequency plane: A chirp that is an oblique line in the time-frequency plane transforms into a harmonic that is a
vertical line in this plane.

is a good idea to perform beamforming in the frequency domain (i.e.,
following Fourier transform) rather than spatial domain.

There exists a vast number of beamforming algorithms in the litera-
ture. Here, we will briefly review only a few general approaches. Each
of these has its advantages and disadvantages, depending on the appli-
cation and the prior knowledge we have about the signal. Maximum
signal-to-noise ratio (SNR) beamforming [1] chooses the weights so
that the SNR at the output of the beamformer is maximized. The op-
timal weights require knowledge of the second-order statistics of the
noise and signal. The multiple side-lobe canceler [2] aims to cancel
the effect of auxiliary channels that are used to measure noise and in-
terference. The Capon beamformer [3], which is a special case of the
linearly constrained minimum variance beamformer [4], minimizes the
output power to ensure that the effect of noise is minimized, with the
constraint that the magnitude of the frequency response in a certain di-
rection is unity. Use of a reference signal [5] suggests the design of the
beamformer so that the MSE between its output and a desired signal
is minimized. The method proposed in this paper can be viewed as a
generalization of the last one. To find a more extensive treatment of
beamforming, see [6].

The motivation behind the proposed method is the ability of the frac-
tional Fourier transform (FrFT) to process the chirp signals better than
the ordinary Fourier transform (FT). In array signal processing, chirp
signals are encountered for example in problems where a sinusoidal
source is accelerating or active radar problems where chirp signals are
transmitted. Acceleration of the source causes its sinusoids to arrive at
the sensors as chirp signals. Therefore, replacing the FT with the FrFT
should improve the performance considerably.

In Section II, we give a brief overview of the FrFT and explain the ad-
vantage of using it in this specific problem. Section III explains the pro-
posed beamforming method. Numerical examples for a moving source
is given in the Section IV. Section V is devoted to a discussion of the
results and future work.

II. FRACTIONAL FOURIER TRANSFORM

The FrFT [7] is essentially a time-varying filter. More specifically,
it is a one-parameter generalization of the FT. We compute the FrFT
by using this parameter as the functional power of the ordinary FT [7].
Lettingx(u) be an arbitrary signal, itsath-order FrFT is defined as

xa(u) =
1

1

Ka(u; u
0)x(u0)du0 (4)

where

Ka(u; u
0) =A� exp i�(cot�u2 � 2 csc�uu0 + cot�u02)

� =
a�

2

A� = 1� i cot�:

The square root above is defined such that the argument of the re-
sult lies in the interval(��=2; �=2]. Whena is an even integer, the
above kernel is undefined. However, it is possible to show that asa ap-
proaches an even integer, the kernel approaches a delta function. That
is,K4l(u; u

0) = �(u� u0) andK4l�2(u; u
0) = �(u+ u0), wherel is

an arbitrary integer. The FrFT reduces to the ordinary FT fora = 1 and
identity operation fora = 0. It is index additive, that is, thea1th-order
FrFT of thea2th-order FrFT is equal to the(a1 + a2)th-order FrFT.
In addition, there exists a fast implementation of the FrFT [8] with im-
plementation cost of orderN log(N), whereN is the signal temporal
length.

The effect of the FrFT is most easily seen in the time-frequency
plane. Here, we use the Wigner distribution to illustrate the effect of
the FrFT on a signal since it is one of the most popular time-frequency
distributions and has many useful properties [9]. It is defined as

W(u; v) =
1

�1

x u+
u0

2
x u�

u0

2
exp[i2�vu0] du0 (5)

wherev denotes the frequency variable, andu is the time or space
variable. The Wigner distribution gives an idea of how the energy of
a signal is distributed in time and frequency. The effect of the FrFT on
the Wigner distribution of a signal is simply a clockwise rotation by an
angle� in the time-frequency plane, as illustrated for a chirp signal in
Fig. 1.

The FrFT has found many applications in digital signal processing
such as filtering [10], signal restoration [11], system synthesis [12],
mutual intensity synthesis [13], system decomposition [14], [15], op-
timum Wiener filtering [16], image restoration [17], and perspective
projections [18]. More complete treatment of the FrFT and many of its
optics and digital signal processing applications can be found in [7].

The FrFT suggests a potential improvement in any application where
the ordinary FT is used since it provides an extra degree of freedom
corresponding to the choice of the ordera. We can attempt to improve
the solution to any problem that utilizes the FT by carrying the extra
parameter throughout the solution and then optimizing over this pa-
rameter. The FrFT is most likely to improve the solutions to problems
where chirp signals are involved. This is because a chirp signal forms
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Fig. 2. Separation of signal and noise in an appropriate domain.

a line in the time-frequency plane, and therefore, there exists an order
for which such a signal is compact. Chirp signals are not compact in
the spatial or time domain. Thus, in many such cases, we can filter out
the signal easily in an appropriate fractional Fourier domain when it
is not possible to separate the signal and noise in space or frequency
domain, as shown in Fig. 2. A sinusoid emitted from an accelerating
source will arrive the sensors as a chirp signal, and therefore, the FrFT
beamforming can improve the beamformer performance. Indeed, our
computer simulations show that much smaller errors are obtained when
the FrFT beamformer is used.

III. B EAMFORMING USING THE FRFT

The method we propose generalizes the minimum MSE beamformer
[5]. In the latter method, the goal is to minimize the MSE between the
beamformer output and the desired signal. The desired signal is deter-
mined by the problem at hand. In a moving source problem, the desired
signal is the signal emitted by the source, which we want to obtain as
free of noise as possible. In an active radar problem, it may be the signal
reflected from the target. It may have different meanings in other beam-
forming applications that we do not mention here. Mathematically, the
optimal weightswwwopt given by

wwwopt = min
www

Efky(t)� yd(t)k
2g (6)

whereyd(t) denotes the desired signal,y(t) the beamformer output,
andk � k theL2 norm given byky(t)k2 =

1

�1
y(t)y�(t)dt. The op-

timum weights can be calculated by substituting the beamformer output
(2) in the MSE expression (6) to be minimized. Solving these equations
give the optimum weights

wwwopt = R
�1
x rxd (7)

whereRx is the covariance of the measurements at the sensors, and
rxd is the cross-covariance between the measurements at the sensors
and the desired signal. The beamformer output is given by (2).

The above result corresponds to the spatial filtering of the signals
arriving at the sensors. We extend this result by using filtering in a
fractional Fourier domain rather than the spatial domain. Fig. 3 shows
the general structure of the proposed beamformer. The measurements
at the sensors are transformed into theath fractional Fourier domain;
then, beamforming is performed in this domain, and the output is trans-
formed back into the time domain by using the inverse FrFT. We can

Fig. 3. Block diagram of the proposed FrFT beamformer.F denotes the
ath-order FrFT.

summarize these operations by writing the input-output relationship
explicitly

y(t) = F
�a

www
H (F afxxx(t)g) (8)

whereF af�g denotes theath order FrFT. Since the structure of the
beamformer is now changed, we have to recalculate the optimum
weights. The goal is again to minimize the MSE between the desired
signal and the output of the beamformer. We substitute the beamformer
output (8) into the MSE (6) to be minimized and solve for the optimum
orders. See [16] for details. The optimum weights that minimize the
MSE are now given by

wwwopt = R
�1
x rx d (9)

whereRx is the covariance of theath-order FrFTs of the signals ar-
riving at the sensors, andrrrx d is the cross-covariance between the
ath-order FrFT of the desired signal and the FrFTs of the signals ar-
riving at the sensors. The covarianceRx and the cross covariance
rx d should be knowna priori in a moving source problem. On the
other hand, in an active radar problem, we can calculate it since the
signal transmitted is known to us, assuming a distribution for the pa-
rameters like range, radial velocity, and DOA of the target.

We can computeRx andrx d using the original covariances as
follows:

Rx =Rx (t; t0)

=
1

�1

1

�1

Ka(t; t
00)K�a(t

0

; t
000)Rx(t

00

; t
000)dt00 dt000

rx d =rx d(t; t
0)

=
1

�1

1

�1

Ka(t; t
00)K�a(t

0

; t
000)rxd(t

00

; t
000)dt00 dt000:

The previous discussion gives the optimum weights for beam-
forming in a certain fractional Fourier domain. We still need to answer
the question as to which domain should be selected. The optimum
FrFT order cannot be found analytically in general. Instead, we
calculate the MSE we want to minimize [see (6)] for differentas,
and select the one that yields the smallest error. We can scan values
of a 2 [�1; 1] using a spacing as close as we wish and make fine
adjustment if necessary.

The proposed method reduces to the ordinary minimum MSE beam-
forming in the spatial domain fora = 0 and to the minimum MSE
beamforming in the frequency domain fora = 1. In Section IV, we
show that in many problems, the optimum order is different than 1 or
0; thus, smaller errors can be obtained when the generalized method
we propose is used.

IV. NUMERICAL EXAMPLES: APPLICATION TOMOVING SOURCES

We demonstrate that the proposed method yields improved results,
that is smaller MSE, in a moving source scenario. We give three nu-
merical examples for stationary, moving, and accelerating sources. The
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Fig. 4. Error plots for a stationary source. (a) MSE for the FrFT beamformer for different values ofa. (b) Comparison of the MSE for the FrFT beamformer
(a = a ), space domain beamformer(a = 0), and frequency domain beamformer(a = 1).

Fig. 5. Same as in Fig. 4 but for a moving source with constant velocity.

source is in the far field and emits an electromagnetic sinusoid with
frequencyf = 100 kHz; therefore, the wavelength� is approximately
3 m. We assume additive Gaussian noise and use five linearly spaced
passive sensors separated by half wavelength, and only instantaneous
measurements are used, without delays. The source signal is assumed
to be stochastic with known second-order statistics. In the second ex-
ample, where the source is moving, we choose the velocity of the source

to be 100 m/s in a direction perpendicular to the array line. In the third
example, the source accelerates from 60 to 120 m/s during the mea-
surement interval with an acceleration of 6 m/s2 in the same direction.
Figs. 4–6 show two figures of the MSE (6) for each scenario: (a) as a
function of the FrFT ordera and the (b) as a function of SNR for beam-
formers in the space domain(a = 0), frequency domain(a = 1), and
the proposed method for the optimum order.
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Fig. 6. Same as in Fig. 4 but for an accelerating source.

TABLE I
MSE FOR THE THREE SOURCE CASES AND

THREE BEAMFORMER DOMAINS, SNR= 20

Fig. 4(a) shows that the optimum order for the stationary sources is
a = 0:3, Fig. 5(a) shows that for the moving source, it isa = �0:3,
and Fig. 6(a) shows that for the accelerating source, it isa = 0:8; ob-
serve that all optimum orders are different than 0 and 1 (corresponding
to standard space and frequency domain beamformers). The improve-
ments in the performance can be easily observed in these plots, espe-
cially for low SNR. In addition, one can see that the improvement is
generally larger in the moving and accelerating sources by comparing
Figs. 4(b)–6(b). This is due to the fact that the FrFT is more effective
in cases where chirp signals are involved, and the accelerating source
produces a chirp signal due to the Doppler effect. The slight improve-
ments in low SNR for the stationary source is due to the high level of
noise, making it possible to extract the signal in some domain rather
thana = 0 or a = 1, depending on the realization.

We summarize the results in Table I, for easy reference, where we
present the MSE values for SNR= 20. The first row of the table shows
the MSE for the proposed method for all three cases, i.e., stationary,
constant velocity, and accelerating source. The second row shows the
error when the spatial beamformer is used. The next row similarly
shows the MSE when the frequency domain beamformer is used. Ob-
serve that the improvement in MSE for the accelerating source case is
as much as 65.7% compared with the spatial beamformer and 62.5%
compared with the frequency domain beamformer for SNR= 20.

V. CONCLUSION

We have proposed a method of beamforming using the FrFT. The
method was shown to be especially useful (yielding smaller errors)
for chirp signals, for instance, in moving source problems, where the
Doppler effect produces chirp signals when the sinusoidal source is ac-
celerating, and causes a frequency shift when the velocity of the source
is constant. This method can be useful also in active radar when we
chirp signals are transmitted to the target. Finding the optimum order
using numerical or iterative methods rather than scanning could elimi-
nate the need for trying manya values; hence, it is of interest for a fu-
ture research. In addition, as another open research area, the proposed
method can be further generalized to more complex filtering schemes
such as multistage [12] or multichannel filtering [14], [15] schemes
rather than a single fractional Fourier domain filtering. Another inter-
esting subject to be investigated is the relationship between the array
geometry and filtering schemes to be used. Additionally, beamforming
in the time-frequency plane, which is going beyond FrFT, can be useful
in certain applications.
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Blind MIMO FIR Channel Identification Based on
Second-Order Spectra Correlations

Ivan Bradaric, Athina P. Petropulu, and Konstantinos I. Diamantaras

Abstract—We consider a problem of identifying a multiple-input mul-
tiple-output (MIMO) finite impulse response (FIR) system excited by col-
ored inputs with known statistics. We propose a new, nonlinear optimiza-
tion-based method that involves the power spectra and cross-spectra of the
system output. The proposed algorithm is tested for the case of cyclosta-
tionary inputs (CDMA scenario) and stationary inputs (SDMA scenario).
Simulation results indicate that the proposed scheme works well, even for
large order systems, and is robust to noise and channel length mismatch.

Index Terms—Blind channel estimation, frequency domain estimation,
MIMO system.

I. INTRODUCTION

We consider the problem of identifying aP -input M -output
linear time-invariant finite impulse response (FIR) system based
on the system output. This problem is referred to as blind system
identification and appears in many contexts, such as speech restoration
in the presence of competing speakers, bioengineering, and multiuser
multiaccess communications.

Identification in the case of spatially independent and temporally
white inputs has been approached mainly using higher order statistics
of the system output [3], [4], [10], [14]. Identification for inputs that are
stationary nonwhite but can be modeled as linear processes has been
approached using either second [6], [8], [15] or higher order statistics
[12], [20]. In those cases, if the input statistics are unknown, the inputs
can be decoupled, but there is a remaining shaping filter ambiguity in
each input. Under certain conditions, the shaping filter ambiguity can
be removed [2], [6], [12].

The identification problem can be simplified if some information
about the input is available or if the inputs can be manipulated. As-
suming that the input signals have the same known period, and under
certain channel conditions, a method for separation of finite alphabet
signals has been proposed in [16]. In [5], by inducing cyclostationarity
in the input signals, a closed-form solution was obtained based on ex-
clusively second-order statistics. Second-order cyclostationary statis-
tics has also been used in [1] for blind multiple-input–multiple-output
(MIMO) identification in OFDM-based multiantenna systems. In [7],
a special structure was imposed on each input and the resulting MIMO
problem with colored inputs was solved using second-order statistics.

In this paper, we consider the problem of identifying the impulse
response of an FIR MIMO system based on the system output. The
system inputs are stationary or cyclostationary and nonwhite with
known correlations. There are several practical cases of MIMO prob-
lems where the statistics of the inputs are known, such as code-division
multiple asccess (CDMA) systems [11], [17], [19] or spatial division
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