
PRINCIPLES OF SONAR BEAMFORMING

This note outlines the techniques routinely used in sonar systems to
implement time domain and frequency domain beamforming systems.  It
takes a very simplistic approach to the problem and should not be considered
as definitive in any sense.

TIME DOMAIN SONAR BEAMFORMING.

Consider an array of hydrophones receiving signals from an acoustic source
in the far-field  (Figure 1a).   If the outputs from the ‘phones are simply added
together then, when the source is broad-side to the array, the ‘phone outputs
are in phase and will add up coherently.

As the source is moved around the array (or the array rotated), then ‘phones
across the array receive signals with differential time delays, so the ‘phone
outputs no longer add coherently and the summer output drops (Figure 1b).

If we plot the signal level as the array is rotated, we get the array beam-
pattern: in this case, where all ‘phone outputs are weighted uniformly, a
classical sinc function.  In order to reduce the effects of the spatial side-lobes
of the beam-pattern, an array shading function is applied across the array
(often a Hamming or Hanning weighting).



In radar beamforming systems, this weighted element summation is often all
that is needed.  The antenna can then be rotated to scan the narrow beam
formed by adding together the array elements.  However, in sonar we can not
usually use this method.  Firstly, sonar arrays are often pretty big and heavy
so must be mounted on the hull of a ship or submarine.  Secondly, even if we
could rotate them, as the array was turned, the movement of water across the
array face would generate flow-noise.  This would swamp out the received
signals we were trying to detect.  Consequently, sonar arrays are usually
mounted in a fixed position on a platform  (or towed behind it) and scanned
electronically.

Electronic beam-steering can be achieved by introducing a time delay network
between the individual ‘phone outputs and the beam summer, so that signals
from the required ‘look direction’ are brought into phase and can be added
together coherently (Figure 1c).  This is similar to phased array radar.

Conceptually, we could systematically vary these time delays to electronically
scan a single beam around the platform, but again we have problems.  If we
consider an active system (where acoustic energy is transmitted from the
platform and targets located by detecting echoes),  it takes around 2 minutes
for the sound energy to get from the transmitter, out to say 50 kYards, and for
any echoes to propagate back (speed of sound in water is around 1500
metres/second).  During this time we need to maintain the receive beam
looking in the same direction, so as not to miss any potential echoes. So for a
typical beamwidth of say around 1 degree, we would need to step the receive



beam around in 1 degree, dwelling for two seconds every time we transmit to
receive any echoes.  To completely search 360 degrees around the ship
would take around 12 minutes!!  This obviously is not sensible (a torpedo
attack can be all done in around 35 seconds), so a number of
delay/summation networks are used in parallel to form a fan of beams with
respect to the array (Figure 2).

Although the delay networks are shown separately in Figure 2, in practice
they usually use a common random access memory store [1].  This store is
organised to hold a running time history of the acoustic data received by the
array (Figure 3).  There is a one-to-one mapping between the element
position in the array and where that data is stored in the memory.  The store is
updated, usually by sampling data from all elements simultaneously at several
times the Nyquist rate.  In between write updates, samples of the required
output beams are generated sequentially.  These are formed by adding
together data accessed by addressing planes across the RAM space-time
matrix.  For example, address plane 1 provides a systematic time delay along
the array and forms a beam to endfire. Address plane 2, a delay down the
array to form a downward looking beam. Address plane 3, equal delay in all
channels to form a beam normal to the array in both azimuth and elevation.



It is an easy step from here to stabilise the beams in space by compensating
for the effects of platform motion.  If the array motion is monitored, using for
example a set of tri-axial accelerometers, this motion data can be used to
correct the read address planes to compensate for the movement and to
inertially stabilise the beams in space.  It is also an easy step to generalise
the space-time beamformer to handle other array geometries, for example to
handle line, cylindrical or conformal arrays, by simply mapping the planar
addresses onto the more complex array geometry (using PROM look-up for
example).

In summary time domain beamforming based on space-time RAM stores is
very flexible and widely used.  The main problem lies in the overall amount of
hardware needed to use this type of system.  In practice, to maintain good
side-lobe levels, the time resolution used to form beams must be equivalent to
sampling the ‘phone data at around 10 times the Nyquist rate (high rate
required to reduce time quantisation effects on spatial side-lobes).  This can
be achieved either by heavily oversampling the ‘phone data or by sampling at
a lower rate (maybe down to close to Nyquist) and then interpolating the data,
often using FIR interpolators, to improve the time resolution of element data
into the beam summer.  This interpolation can be carried out either before or
after the delay/storage operation: in practice a combination of pre-store and
post-store interpolation is used.  Either way, the need to oversample or to
interpolate increases processing load and for large systems, frequency
domain realisations are often used to minimise system size and cost.  But as
always there are no free dinners, the cost in the case of frequency domain
beamformers is in the added complexity of the algorithms.



FREQUENCY DOMAIN SONAR BEAMFORMING.

The main aim of using frequency domain techniques for sonar beamforming is
to reduce the amount of hardware needed (and hence minimise cost).  The
time-domain system outlined above is very flexible and can work with non-
equi-spaced array array geometries.  It is very efficient with arrays with small
numbers of channels, say up to 128 phones, but as it is essentially an O(N2)
process it becomes unwieldy with large arrays.

Many sonar systems need to use spectral data: for example, in active pulse-
compression systems, the correlation processing is often conveniently carried
out using fast frequency domain techniques and for passive systems data is
usually displayed as a spectrum versus time (LOFARgram) plot for a number
of look directions.  In these types of system, it may be convenient to use
frequency domain beamforming to avoid some of the time-frequency,
frequency-time transformations that would be needed if time domain
beamforming were used.  There are several classes of frequency domain
beamforming:-

1. ‘conventional’ beamforming, where array element data is essentially time
delayed and added to form beams, equivalent to a spatial FIR filter,

2. adaptive beamforming, where more complicated matrix arithmetic is used
to suppress interfering signals and to obtain better estimates of wanted
targets

and
3. high resolution beamforming, where in a very general sense target signal-

to-noise is traded to obtain better array spatial resolution.

Here we will consider only conventional beamforming. The conventional
beamforming algorithms can be again sub-divided into three classes, narrow-
band, band-pass and broad-band systems.

NARROW BAND SYSTEMS.

If the beamformer is required to operate at a single frequency, then the time
delay steering system outlined above can be replaced by a phase delay
approach.  For example, the time domain beamformer output can be written
as:-

         k=N-1

Ar(t) =  Σ   Wk.fk.(t+τk,r)
          k=0

where  N       is number of hydrophones in the array

Wk     is the array shading function

    fk.(t)   is the time domain k
th

 element data

and   τk,r     is the time delay applied to the k
th

 element data for the r
th

 beam



If f(t) is generated by a narrow band process, then we can write:-

f(t) =         cos (ωt)
= Re [ exp{-jωt} ]

If we take a snap-shot of data across the array at some time t=T0 when the
source is at some angle Φ with respect to broad-side (assume an equi-spaced
line array), then we have:-

fk(T0) =        cos(ωT0+kφ)

= Re [ exp{-j(ωT0+ kφ)}]

where φ is the differential phase across successive elements in the array due
to the relative bearing Φ of the source.

We can bring the element data into phase by correcting for this kφ term, when
the array beam sum output is steered to look towards the source at bearing Φ.
If we form our beam sum output as:-

         k=N-1

Ar(T0)   =  Σ   Wk. fk(T0). exp{-jkφ}

          k=0

  =  N.cos(ωT0)

In practice, we know we want to form a fan of say M beams from the array, so
we can write:-

         k=N-1

Ar(T0)   =  Σ   Wk. fk(T0). exp{-jkrθ}      ….   for –M/2 <= r <= M/2-1

          k=0

If we choose θ so that θ.M/2 is equal to the differential phase between
elements when the source is at end-fire, then we have formed a fan of M
beams covering +/-90 degrees about broad-side.



This process is repeated on successive snap-shots of array data, with
snapshots gathered at some rate faster then Nyquist for the frequency of
interest.

If we compare this beam equation with that for the discrete Fourier transform

(DFT) of a block of time series data Bk given by:-

                  t=N-1

As       =  Σ   Wt. Bt. exp{-j2π/N.st}      ….  for –N/2 <= s<= N/2-1

          t=0

then it can be seen that the two are similar and we can re-write the
beamforming algorithm as:-

         k=N-1

Ar(T0)   =  Σ   Wk. fk(T0). exp{-j2π/N.krα} ... for –N/2 <= r <= N/2-1

          k=0

This is identical to the DFT equation, except for the α term in the complex
exponent:  α is usually between zero and one for beamforming.

In the DFT case, the coefficients are based on the integral roots of unity, exp{-
j2π/N}, whereas, in the beamforming case, the coefficients use the fractional
roots of unity, exp{-j2π/N.α}.  Hence the beamforming equation in a fractional
discrete Fourier transform (FDFT) [2] rather than a DFT.  The introduction of
this factor α removes the symmetry of the basic DFT and at first sight it would

appear that an order N
2
 process is needed to realise the algorithm.  However,

there are several techniques that allow the FFT to be used to approximate the
required FDFT, particularly for the narrow-band signal case outlined here.

Firstly, one can pad the input data sequence (the snap-shot of data across the
array) by appending zeroes to the data block – this is effectively an
interpolation process that allows the FFT exponents used for transforming the
input data to approach the required FDFT exponents.  The second approach
is to use the nearest larger convenient FFT block size and to select the
transform outputs closest to those that would have been generated by the
exact FDFT algorithm.  Both of these approaches are used in practice and
result in narrow-band beamformers with order N.logN processes.  However,
there are fast algorithms for the FDFT, similar to the chirp-Z transform, and in
many applications, particularly broad-band systems,  these are more useful.



WIDE-BAND FREQUENCY DOMAIN BEAMFORMING [5]

The frequency domain systems outlined above rely on the source being
narrow band.  This is not usually the case in sonar, although it is often a
reasonable approximation in radar and some communication systems.

One obvious way to extend the narrow band implementations is to gather a
block of data from each sensor in the array (rather than snapshot across the
array) and to use an FFT to convert each block into the frequency domain to
generate narrow band components.  The narrow band beamforming
algorithms outlined above can then be applied sequentially to each of the
frequency components in turn.  This approach, a 2D FFT beamformer, is
shown schematically in Figure 4 below.  The system complexity of this type of
system is much less than the corresponding time domain implementation for
large arrays but there are some problems.

Figure 4 – 2D FFT Beamformer Schematic

Blocks of time domain element data are first transformed into the F-domain
using P point FFTs.  N point FFTs are performed across the array for each
frequency cell of the P point FFTs to form N ‘beams’ each with P frequency
cells.  The P frequency cells per ‘beam’  are then transfromed back to time
domain using P point IFFTs.

If either of the simplistic approximations to the FDFT are used for the
beamforming part of the process then, because the required value of α
changes linearly with frequency, the effective maximum response axis (MRA)
of any beam from the system is also frequency dependent.  This effect is
shown in Figure 5.



FIGURE 5 – Output from a 2D FFT wide-band beamformer.

X axis corresponds to bearing, Y axis signal level and the Z axis frequency.
High frequencies are at the front of the plot with low frequencies at the back.

Note that received bearings change with frequency.

This shows the bearing/frequency distribution for a 2D FFT beamformer
receiving three broad-band contacts at +45, 0 and –45 degrees wrt array
broad-side.  It can be seen that the beam MRAs for targets off broad-side vary
linearly with frequency.  This creates considerable problems in down-stream
processing: systems usually require that beam pointing directions are
independent of frequency.  (The reason for this frequency/bearing variation is
due to the fact that the 2D FFT beamformer actually transforms element data
into wave-number/frequency space rather than into bearing/frequency space).

A number of tricks have been used in the past to correct for this MRA
variation.  If the received data is relatively narrow-band, it is often ignored.
With broader-band signals, an interpolation process can be used to
interpolate the 2D FFT output into beams.  The problem with this approach is
that the interpolation process usually requires 2D FIRs and the interpolation
scheme is often more complex than the time domain beamforming process
that it is trying to replace!

The only real way to make the process broad-band is to tackle the problem of
finding a fast algorithm for the FDFT.  Then the beamforming process can be
made exact, with the value of α changed exactly for each frequency
component in the broad-band signal, thus producing beams with frequency
invariant MRAs.



FAST ALGORITHMS FOR THE FRACTIONAL DFT.

We have shown above that the narrow band beamformer can be implemented
by using an algorithm of the form:-

         k=N-1

Ar,ω   =  Σ   Wk.fk. exp{-j2π/N.krα} ... for –N/2 <= r <= N/2-1

          k=0

where α is a function of  ω, the frequency cell currently being processed.

We will combine the weighting function with the data sample and  simplify the
equation to write:-

         k=N-1

Ar,ω   =  Σ   Bk. exp{-j2πkrβ} ... for 0 <= r <= N-1

          k=0

where β is equal to α/N.

Using Bluesteins decomposition [3], we can write  2kr = k
2
 + r

2
 – (r – k)

2
,

giving:-

         k=N-1

Ar,ω   =  Σ   Bk. exp{-jπ[ k
2
 + r

2
 – (r – k)

2
]β}

          k=0

          k=N-1

          =      exp{-jπr
2β}  Σ   Bk. exp{-jπk

2β}. exp{-jπ(r – k)
2β}

             k=0

          k=N-1

          =      exp{-jπr
2β}  Σ   Yk. Zr – k

             k=0

where Yk = Bk. exp{-jπk
2β}

and Zk =  exp{jπk
2β}



The summation term is the discrete convolution of Yk and Zk and can be
calculated using one of the usual fast frequency domain approaches [4].  This
has the minor complication that the FFT methods generate a circular
convolution,  so we need to extend the length of the two sequences, by
padding the data blocks with zeroes to some length q, where q is the nearest
convenient FFT block size greater than or equal to 2N.  Then we can
implement the FDFT using the block schematic shown in Figure 6, with the
complete broad-band beamformer schematic is as shown in Figure 7.

Figure 6 – Practical Implementation of fast Fractional DFT.

Figure 7 – FFT/FDFT Beamformer Schematic

Beam plots from this process for the same target scenario as shown
previously are in Figure 8 – it can be seen that beam MRAs are invariant with
frequency and that beam widths increase as frequency decreases. This type
of frequency domain system generates beam outputs identical to a time
domain beamforming system,  i.e. it is a frequency domain implementation of
a time domain process, rather than an approximation. The technique has
been widely used in UK sonar systems and has been generalised for planar,
cylindrical, conical and spherical array geometries.



Figure 8 – Output from an FFT/FDFT Beamformer.

X axis corresponds to bearing, Y axis to signal level and Z axis frequency.
Note that beam MRAs are invariant with frequency.

The overall efficiency of the process is dependent on an efficient FFT
implementation: higher radix transforms in general provide better
performance.  In general, the broad-band frequency domain approach
requires considerably less hardware than the equivalent time domain system
when processing arrays of more than around 100 elements. Below 32
elements, the time-domain method probably wins, but it may well still be more
convenient to use frequency domain beamforming if data must be
transformed into the F-domain for other operations , e.g. in LOFAR systems,
or when fast F domain replica correlation is used.

Copyright Curtis Technology (UK) Ltd 1998.
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