
Sistemas Automáticos

Tema Arquitectura del Autómata Programable

El Autómata Programable

Definición

- equipo electrónico
- de control
- con hardware independiente del proceso a controlar
- que se adapta a dicho proceso mediante software específico
- que contiene la secuencia de operaciones a realizar

Señales de entrada

- digitales
 - finales de carrera
 - detectores de proximidad
 - presencia
- analógicas
 - temperatura
 - posición
 - velocidad

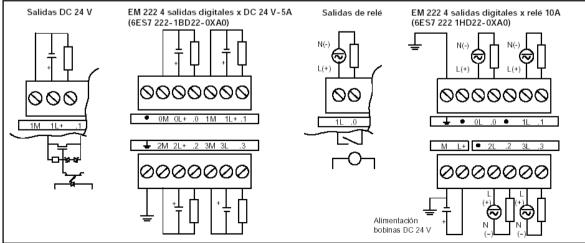
SIEMENS

Datos técnicos

SIMATIC S7-200 EM 221 16 entradas digitales x DC 24 V, EM 222 4 salidas digitales x DC 24 V-5A, EM 222 4 salidas digitales x relé 10A

Tabla 1 Datos técnicos del módulo EM 221 16 entradas digitales x DC 24 V

Tabla T Datos tecnicos del	modulo EIVI 221 16 entradas digitales X L	JO 24 V		
Descripción Nº de referencia	EM 221 16 entradas digitales x DC 24 V 6ES7 221-1BH22-0XA0	Entradas DC 24 V (sumidero) Entradas DC 24 (fuente)		
Tamaño físico				
Dimensiones en mm (I x a x p)	71,2 x 80 x 62	1		
Peso	160 g	╗ ╗		
Disipación	3 W	00000 00000		
Tensión DC disponible +DC 5 V	70 mA	1M .0 .1 .2 .3 1M .0 .1 .2 .3		
Características de las entradas				
N° de entradas	16 x DC 24 V	ॏ ऻ ॑॑॑॑॑॓॓ऻ		
Tipo de datos	Sumidero de corriente/fuente (tipo 1 IEC con sumidero de corriente)			
Tensión nominal	DC 24 V a 4 mA	ر ب رب		
Tensión continua máx. admisible	DC 30 V	 EM 221 16 entradas digitales x DC 24 V(6ES7 221-1BH22-0XA0) 		
Sobretensión	DC 35 V durante 0,5 s			
Señal 1 lógica (mín.)	DC 15 V a 2,5 mA	1 + 1 / / / / + / / / /		
Señal 0 lógica (máx.)	DC 5 V ó 1 mA	1		
Retardo de las entradas (máx.)	4,5 ms	00000000000		
Conexión de sensor de proximidad de 2 hilos (Bero) Intensidad de fuga admisible (máx.)	1 mA	• • 1M.0 .1 .2 .3 2M .4 .5 .6 .7		
Aislamiento Separación galvánica (campo a circuito lógico) Grupos de aislamiento	AC 500 V, 1 minuto	0000000000		
Entradas ON simultáneamente	Todas a 55° C	1 ↓ / / / / ↓ / / /		
Longitud del cable Apantallado No apantallado	500 m 300 m	<u></u>		


Señales de salida

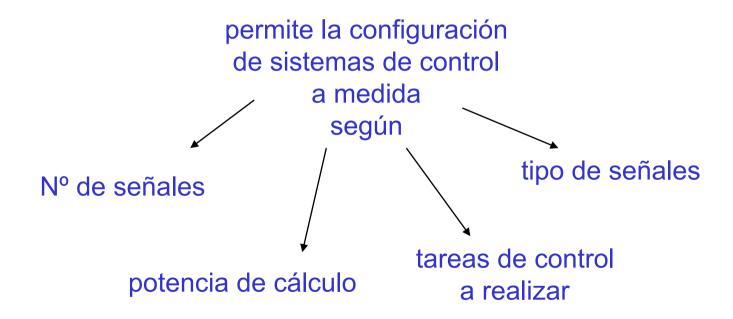
- digitales
 - contactores
 - · válvulas todo-nada
 - relés
 - lámparas
- analógicas
 - tensión (motor CC, válvulas proporcionales, etc)
 - corriente (resist. calent.)

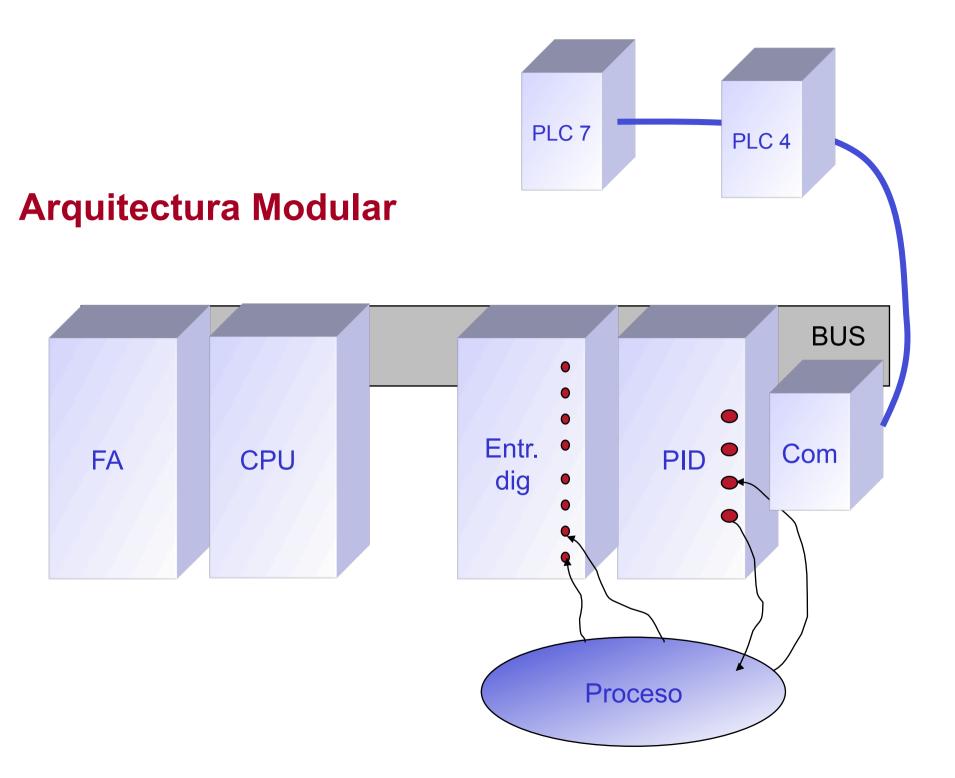
Tabla 2 Datos técnicos de los módulos EM 222 4 salidas digitales x DC 24 V-5A y EM 222 4 salidas digitales x relé 10A

Descripción Nº de referencia	EM 222 4 salidas digitales x DC 24 V-5A 6ES7 222-1BD22-0XA0	EM 222 4 salidas digitales x relé 10A 6ES7 222-1HD22-0XA0		
Intensidad nominal por neutro (máx.)	5 A			
Corriente de fuga	30 μΑ	-		
Carga de lámparas	50 W	100 W DC/1000 W AC		
Tensión de bloqueo inductiva	L + menos 47 V ²	T-		
Resistencia en estado ON (contactos)	Máx. 0,05 Ω	0,1 Ω (máx., si son nuevos)		
Aislamiento Óptico (galvánico, campo a circuito lógico)	AC 500 V, 1 minuto	-		
Bobina a circuito lógico	-	Ninguno		
Bobina a contacto	-	AC 1500 V, 1 minuto		
Resistencia (bobina a contacto)	4 11	100 M Ω mín., si son nuevos		
Grupos de aislamiento	1 salida	1 salida		
Retardo OFF a ON/ON a OFF (máx.)	500 μs	-		
Conmutación	-	15 ms		
Frecuencia de conmutación (máx.)	-	1 Hz		
Vida útil mecánica	-	30.000.000 (sin carga)		
Vida útil de los contactos	-	30.000 (carga nominal)		
Salidas ON simultáneamente	Todas a 55° C	Todas a 55°C con 20 A de intensidad máx. ³ Todas a 40°C con 10 A por salida		
Conexión en paralelo de dos salidas	SI	No		
Longitud del cable Apantallado	500 m	500 m		
No apantallado	150 m	150 m		

- 1 Cuando un contacto mecánico aplica tensión a una CPU S7-200, o bien a un módulo de ampliación digital, envía una señal "1" a las salidas digitales durante aproximadamente 50 microsegundos. Considere ésto especialmente si desea utilizar aparatos que reaccionen a impulsos de breve duración.
- 2 Si la salida se recalienta debido a una conmutación inductiva excesiva, o bien a circunstancias anormales, podría desconectarse o averiarse.
 La salida se podría recalentar o averiar si se expone a más de 0,7 J de energía al desconectar una carga inductiva. Para evitar este problema es posible conectar en paralelo a la carga un circuito de supresión conforme a lo descrito en el Manual del sistema de automatización S7-200. Estos componentes se deben dimensionar adecuadamente para la aplicación en cuestión.
- 3 El módulo EM 222 4 salidas digitales x relé tiene una clasificación FM diferente que los demás equipos S7-200. Su clasificación es T4, en vez de T4A FM 1ª clase, categoría 2, grupos A, B, C y D "Hazardous Locations".

Programa de control


El PLC gobierna las señales de salida según el *programa de control* almacenado en memoria a partir del estado de las señales de entrada


Unidad de Programación

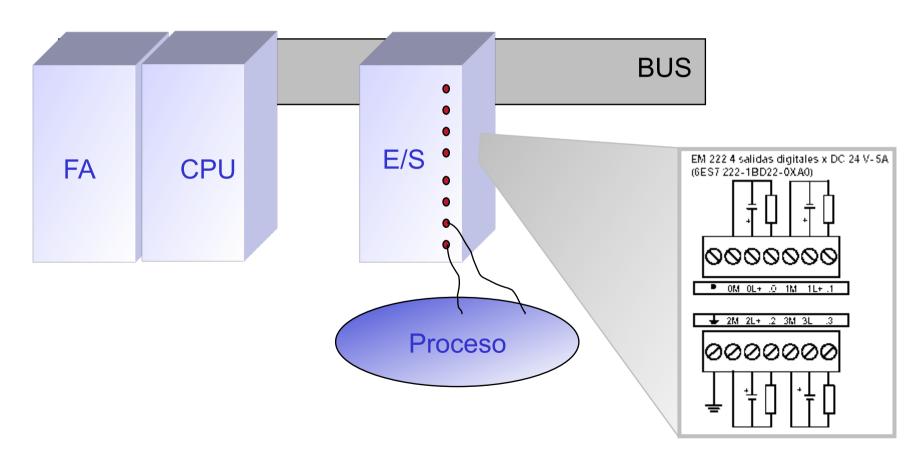
El programa de control se introduce a través de una *unidad de programación* que permite además depurar, simular, monitorizar, controlar autómata, etc.

Estandarización del hardware

El PLC se caracteriza frente a otros sistemas de control programables por la estandarización del su hardware

Bloques Esenciales de un Autómata

Unidad de Control (CPU)


- 1. Consulta el estado de las entradas
- 2. recoge de memoria la secuencia de instrucciones
- 3. las instrucciones son ejecutadas en serie, una a una
- 4. elabora señales de salida u órdenes
- 5. actualiza salidas, temporizadores y contadores

Memoria

- Datos intermedios que no aparecen en salida (Marcas)
- Reflejo o imagen de estados leídos en entradas (PAE)
- Reflejo o imagen de valores no enviados a salidas (PAA)
- Memoria del programa:
 - secuencia de instrucciones
 - parámetros de configuración del API (tpo de ciclo, watchdog, etc)

Interfases E/S

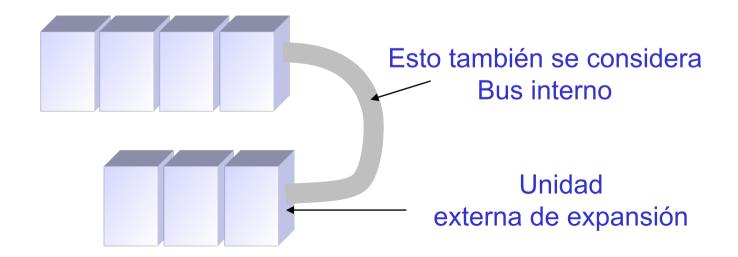
- Se conectan al proceso y sus señales a través de bornas
- se conectan a la CPU mediante el bus interno
- adapta las señales del proceso a las señales internas del PLC

Fuente de Alimentación

- A partir de una tensión exterior (110/220 V)
- genera las tensiones necesarias
- para el funcionamiento de los circuitos del sistema (ej: 24 V)
- Suele llevar una batería tampón

Batería Tampón

En caso de fallo de alimentación asegura:


- programa (instrucciones)
- determinados datos de bits (marcas remanentes)
- algunos temporizadores y contadores

Bus Interno

Consiste en una serie de hilos o pistas para intercambiar datos y órdenes que conecta CPU con memorias y con los interfases E/S

BUS interno =

Bus de Datos + Bus de Direcciones + Bus de Control

La CPU

CPU

- Constituida por un microprocesador
- Ejecuta programa de usuario
- Gestiona la transferencia de información en el sistema E/S
- Funcionamiento interpretado...
 - Ejecuta secuencialmente una vez tras otra:
 - 1. leer instrucción de la memoria
 - 2. decodificar
 - 3. ejecutar

CPU: Bloques fundamentales

ALU:

Operaciones aritméticas (sumas, restas...)

y lógicas (AND, OR, ...)

Acumulador (AKKU1, AKKU2, VKE):

Almacena el resultado de la última operación y sirven de resultado intermedio en operaciones aritméticas y lógicas

Flags:

Resultado de la operación (mayor que, positivo, negativo, etc)

PC:

Contador del programa. Existen instrucciones que lo modifican (instrucciones de salto...)

Decodificador de Instrucciones:

Decodifica las instrucciones y genera señales de control

Programa ROM Monitor:

Es el sistema operativo del PLC. Gestiona la puesta en marcha, rutinas de test, excepciones, etc.

Registros de pila:

Permiten almacenar resultados parciales (ej: instrucciones con paréntesis, llamadas a funciones...)

CPU: Arquitecturas

- Coprocesador

 Varios microprocesadores
 que trabajan concurrentemente
 en paralelo
- Control Distribuido
 - Varios módulos inteligentes cada uno tiene un μP y memoria propia desempeñan tareas de forma autónoma (ej: PID) descargando la CPU de esas tareas Utiliza tecnologías de bus (ej: profibus)

La Memoria del Autómata

Memoria del Autómata

Tipos de datos almacenados en un PLC

- a) Datos de proceso
 - Señales de planta Entradas Salidas
 - Variables internas

```
de bit: relés internos (marcas) de palabra: temporizadores, contadores
```

- Datos alfanuméricos y constantes (bloques DB)
- b) Datos de control
 - Instrucciones del programa
 - Configuración del autómata

Modo de funcionamiento
Tiempo de ciclo
Parámetros del watchdog (reloj de guarda)
Nº de E/S

Mapa de Memoria del Autómata

Memoria de trabajo

Monitor

sistema operativo

Memoria interna

Imagen E/S (PAA,PAE)

Relés internos

Temporizadores

Contadores

Registros internos

programa

Memoria externa

programa (instrucciones, parámetros) datos (constantes, texto)

Relés internos (marcas)

- 1 bit
- Localizados en RAM
- utilizados como datos temporales, operaciones intermedias, etc.
- no asociados a ningún borne
- Dos tipos
 - Remanentes: protegidos contra pérdidas de tensión (batería)
 - No remanentes: sus contenidos se borran al apagar

Temporizadores y contadores

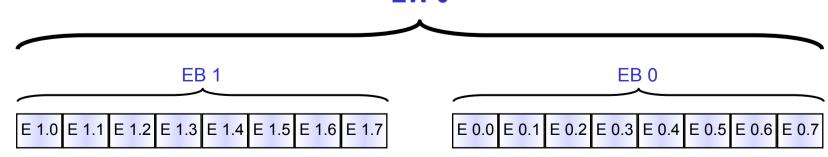
- 16 bits
- codificados en BCD (de 0000 a 9999)
- Localizados en RAM
- almacenan valores de tiempos y conteo
- Pueden cargarse, borrarse, arrancarse y pararse desde programa
- Hay varios modos (retardo a la conexión, retardo a la desconexión, etc.)
- También los hay remanentes y no remanentes

Registros Internos

- tamaño palabra (8-16 bits)
- utilizados para operaciones lógicas, aritméticas y manipulacion de datos

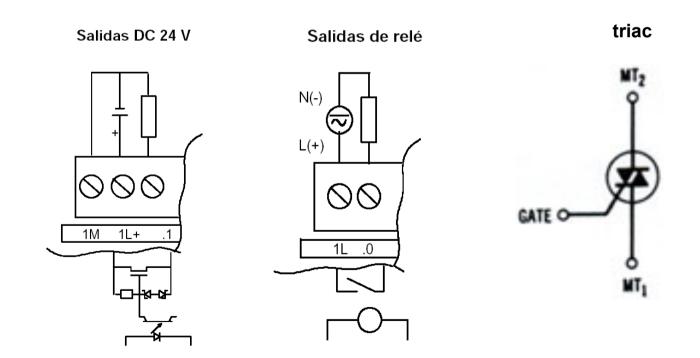
Memoria de programa

- Puede ser interna o externa enchufable a la CPU
- almacena las instrucciones del programa
- cada instrucción ocupa 2 bytes
- puede tener datos alfanuméricos y variables
- habitualmente protegido (RAM+batería o EPROM)


Interfases E/S

Descripción

- Establecen la comunicación entre CPU y el proceso
- codifican señales de proceso al formato E/S del PLC
- decodifican y amplifican el formato E/S del PLC y envían al proceso

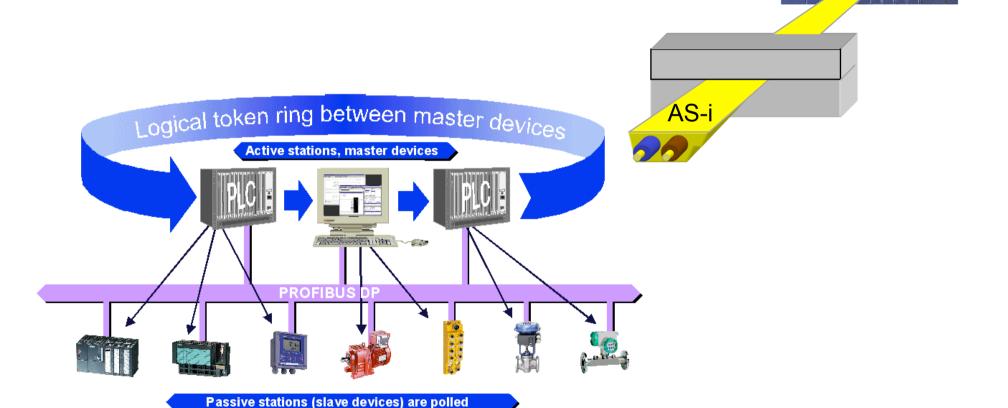

Clasificación por el tipo de señales

- digitales 1 bit
- digitales de varios bits
- analógicas
 - en tensión (0-10 V)
 - en corriente (4-20 mA)

Clasificación por la tensión de alimentación

- de corriente continua (24 V)
- corriente continua a colector abierto (PNP,NPN)
- de corriente alterna (triac)
- salidas por relé (libres de tensión)

Clasificación por el aislamiento


- con separación galvánica (optoacopladores)
- con acoplamiento directo

Clasificación por la forma de comunicación con CPU

- serie
- paralelo

Clasificación por la ubicación

- locales
- remotos (red AS-i, profibus)

Fuente de Alimentación

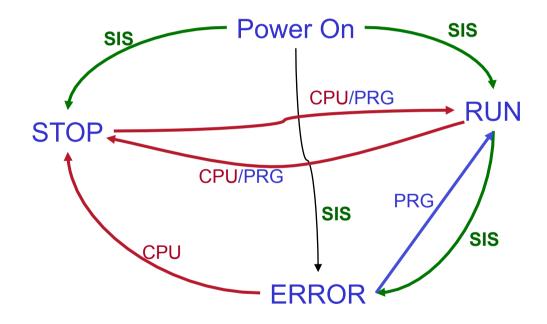
Fuente de alimentación

Suele ser continua 24 V o alterna 110/220 V

Tres sistemas a alimentar:

- CPU + interfases E/S (alimentación del autómata). La CPU alimenta las interfases a través del bus interno
- Alimentación para las entradas
- Alimentación para las salidas

Batería tampón:


- Mantener valores de RAM (marcas remanentes, algunos registros y programa)
- 3.5 V @ 1500-5000 mAh, duran 1 a 5 años de vida
- Suele estar monitorizado por un led
- Suele existir una excepción asociada a batería baja

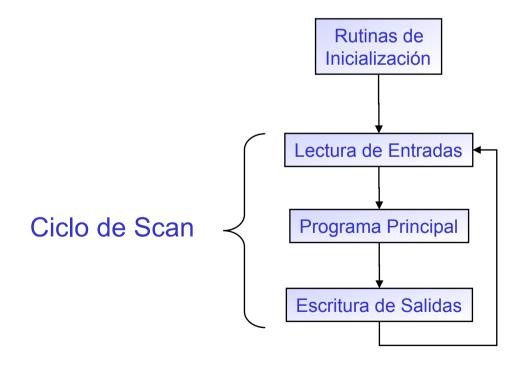
Estados de Operación Básicos

Estados de Operación Básicos

- STOP:
 - No se ejecuta programa
 - usado para mantenimiento o diagnóstico
 - Salidas pasan a estado OFF
 - Se congelan temporizadores y contadores
 - Modo del autómata mientras se programa
 - Por defecto tras el arranque (en algunos modelos)
 - Se puede acceder a él por interruptor
- RUN
 - Modo de ejecución normal del autómata
 - salidas temporizadores y contadores evolucionan con normalidad
 - alguns autómatas pueden pasar a modo RUN automáticamente tras el arranque
- ERROR
 - Se accede en caso de error de funcionamiento
 - Salidas pasan a OFF
 - puede abandonarse mdte. puesta en tensión o desde unidad de programación

Tránsito entre Estados de Operación Básicos

SIS: Sistema Operativo

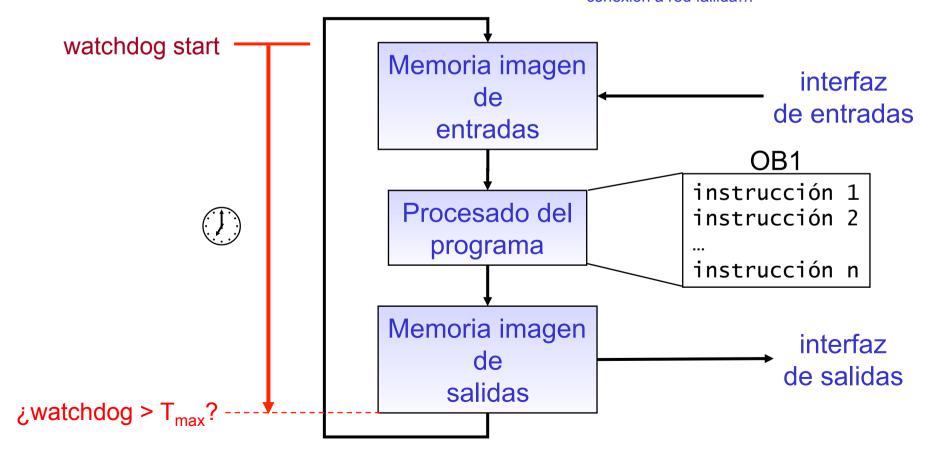

CPU: Usuario

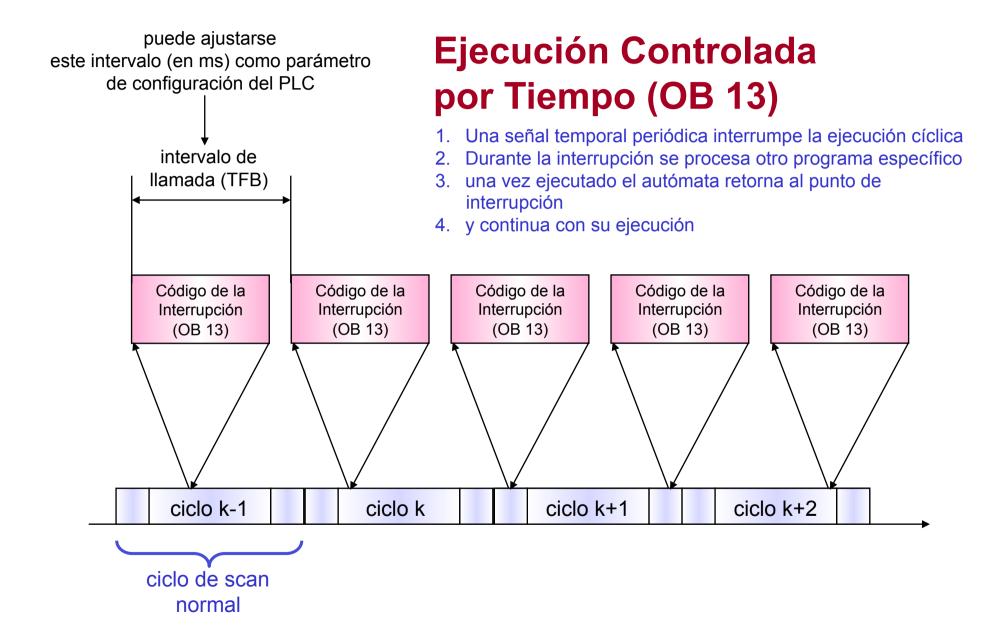
PRG: Programa

Modos de Ejecución del Autómata. Ciclo de Funcionamiento

Ciclo de Operación (Ciclo de Scan)

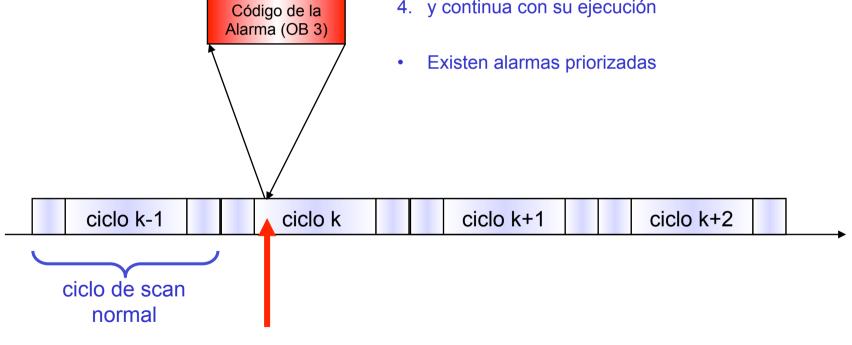
Básicamente, el autómata opera según un un funcionamiento cíclico (ver figura)




Modos de Ejecución

- Cíclico (OB1)
- Ejecución controlada por Alarmas (OB 3)
- Ejecución controlada por tiempo (OB 13)
- Tratamiento del procedimiento de arranque (STOP > RUN) (OB 21)
- Tratamiento del procedimiento de arranque (conexión a red) (OB 22)
- Tratamiento de errores en el hardware (fallo de batería) (OB 34)
- Disparo de tiempo de ciclo (watchdog) (OB 31)

Modo de Ejecución Cíclica (OB 1)

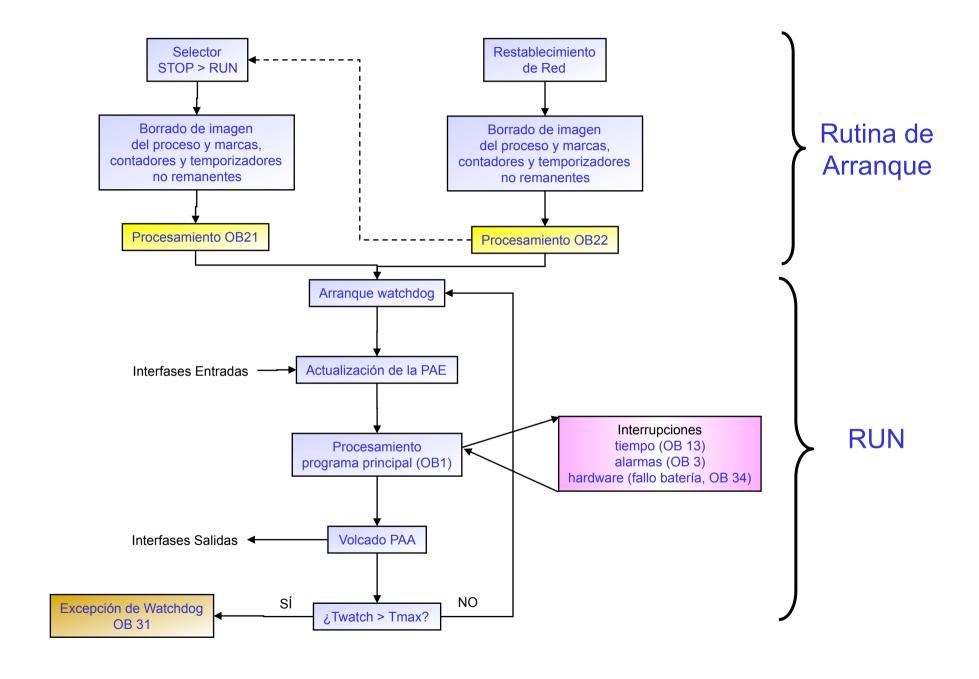

- Arranca el watchdog
- 2. Copia valores de entradas en PAE
- Produce llamada al programa de usuario (almacenado en OB1)
- 4. El programa de usuario almacena resultados en PAA
- 5. Transfiere PAA a las salidas de la periferia
- Si el watchdog no se arranca al cabo de un tiempo (ej. 300ms) el autómata pasa a STOP. Esto puede ocurrir por
 - Avería
 - bucle sin fin...
 - conexión a red fallida...

Ejecución Controlada por Alarma (OB 3)

- 1. Un evento (ALARMA) interrumpe la ejecución cíclica
- 2. Durante la interrupción se procesa otro programa específico
- 3. una vez ejecutado el autómata retorna al punto de interrupción
- 4. y continua con su ejecución

Evento asociado a una entrada del autómata (ALARMA)

Proceso de Arranque (OB 21, OB 22)


- Permiten preajustes e inicializaciones
- Bloques de programa ejecutados en el arranque
 - RUN>STOP: OB 21
 - Restablecimiento de tensión de red: OB 22

Fallo de Batería (OB 34)

- Se procesa el OB 34
- Permite programar la reacción ante fallo en la batería
 - Señalización luminosa
 - Alarma sonora, etc.

Otros modos de funcionamiento

- OB 251:
 - Control PID (preprogramado), se ejecuta un control digital PID en intervalos regulares de tiempo (control discreto)
- OB 31:
 - Código ejecutado ante disparo del watchdog... acciones a realizar cuando el PLC "se cuelga"

Bibliografía:

• Josep Balcells, José Luis Romeral. "Autómatas Programables", Ed. Marcombo. Serie Mundo Electrónico